• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Unidad 1
 

Unidad 1

on

  • 333 views

 

Statistics

Views

Total Views
333
Views on SlideShare
283
Embed Views
50

Actions

Likes
0
Downloads
1
Comments
0

2 Embeds 50

http://quim01materia.blogspot.mx 49
http://quim01materia.blogspot.com.es 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft Word

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Unidad 1 Unidad 1 Document Transcript

    • UNIDAD 11.1. La química: una ciencia interdisciplinaria.El mundo actual gracias a la química se desarrolla día con día, logrando mayores beneficios para elhombre, ya que esta ciencia interviene en todos los aspectos de nuestra vida cotidiana, desde elnacimiento hasta la muerte.En el universo las reacciones químicas se realizan espontáneamente, produciendo diversas sustancias.En la tierra, las reacciones químicas también ocurren espontáneamente en forma rápida, debido sobretodo a la presencia del oxígeno en el aire y en las aguas de los mares, ríos y lagos.Los vegetales producen una gran variedad de compuestos utilizando el bióxido de carbono de laatmósfera, el agua, los minerales del suelo, y como fuente de energía, la luz solar.La vida animal se mantiene gracias a la combustión que realiza el organismo, produciéndose bióxidode carbono que se expulsa en la respiración, liberándose la energía necesaria para que se efectúen lascomplejas reacciones químicas que los organismos necesitan para mantenerse vivos.Se asegura que nada hay que escape a la intervención de la química, sea de una forma u otra. Se leencuentra en una célula o una estrella, como manifestaciones de la naturaleza.En muchos casos el hombre se sirve de ella para satisfacer sus necesidades creando bienesmateriales como vestidos, alimentos, combustibles, etc.Por todo lo anterior expuesto, concluimos que la química es una ciencia interdisciplinaria, ya quepara su desarrollo, es necesario su relación con los seres vivos (Biología), en el estudio de laspartículas subatómicas (Física), con el petróleo y sus derivados (Matemáticas). a) Concepto de ciencia.La ciencia es un conjunto de conocimientos razonados y sistematizados opuestos al conocimientovulgar.Podemos afirmar que la ciencia es uno de los productos mas elaborados del ser humano pues a travésde ella el hombre ha comprendido, profundizado, explicado y ejercido un control sobre muchos delos procesos naturales y sociales.Las principales características de la ciencia son: Sistemática: ya que se emplea el método científico para sus investigaciones Comprobable: porque puede verificarse si es falso o verdadero lo que se propone como conocimiento
    • Perfectible: ya que constantemente se modifican sus enunciados, pues el hombre al aumentar sus conocimientos la corrige y mejora. Natural: estudia todo lo que se encuentra en el medio ambiente.b) Ciencia formales y factuales.La ciencia se divide para su estudio en: Las ciencias formales son aquellas que estudian ideas. Su carácter principal es que demuestran o prueban sus enunciados en principios lógicos. Ejemplos: lógica y matemáticas.Las ciencias factuales comprueban mediante la observación y la experimentación sus hipótesis leyes o teorías. Ejemplos: las ciencias naturales y sociales. c) Método científico.El método científico experimental es el más adecuado para trabajar en química, que es una cienciafactual. Es el producto de una serie de investigaciones razonadas y organizadas de tal maneras quenos llevan a una solución del problema planteado.No siempre es posible experimentar con todos los fenómenos naturales, pues en muchos casos elinvestigador no interviene en las causas del fenómeno en estudio, por ello para no alterar de maneraintencionada y controlada ninguna de las variables, solo puede llevar a cabo su investigacióncientífica mediante la observación sistemática y minuciosa de dichos fenómenos cuando se presentan.Las etapas o pasos del método científico experimental son:1. Definición del problema: en esta etapa se plantean las preguntas a las que se quieran respondercon claridad, consta de las siguientes partes: Observación del fenómeno y expresión de éste en un lenguaje sencillo, natural o llano. Realizar consulta bibliográfica sobre ese fenómeno.2. - Plantear hipótesis de trabajo: Es en sí una predicción (suposición) en la que se explica cómo ypor qué sucede el fenómeno.El enunciado de la hipótesis debe involucrar las variables del fenómeno, ya sea cualitativas (nomedibles) ó cuantitativas (medibles) debe formularse mediante proposiciones afirmativas, debe serclara y debe basarse en la investigación bibliográfica. La hipótesis estará formulada de tal maneraque sus consecuencias puedan ser comprobadas mediante la experimentación.Debemos de escoger un método de enjuiciamiento que nos ayude a explicar el fenómeno observado.
    • 3. - Elaboración de un diseño experimental: en esta etapa se escoge o elabora el procedimientoexperimental que se va a usar y los instrumentos de medición capaces de medir y controlar lasvariables del fenómeno.El procedimiento experimental es la secuencia de operaciones que va a realizar el investigador. Es elinvestigador quien decide qué medir y cómo hacerlo, por lo cual considera los aspectos de equipo,tiempo y dinero disponible.Una vez que se han llevado a cabo los experimentos de prueba, al realizar el experimento final sedeberán tomar en cuenta todas las mediciones hechas, así como, anomalías y detalles que ocurran a lahora de realizarlo.4. - Análisis del resultado: una vez obtenidas las mediciones, es necesario el representarlas pormedio de tablas y/o gráficas que nos ayudan a representar el fenómeno en forma cuantitativa loscuales deben de ayudar a contestar lo más claramente posible las preguntas planteadas.5.- Obtención de conclusiones: en este punto toca responder con claridad las preguntas planteadasen el experimento y manifestar si fue válida o no la hipótesis de trabajo.Si hay preguntas que no se puedan responder deberá establecer el por qué o, si el caso lo amerita,hacer una conjetura acerca de la hipótesis o modelo que describa el fenómeno estudiado.6.- Elaboración del informe escrito: de los factores más importante a la hora de escribir un informecientífico es la claridad, también tomar en cuenta al nivel académico a quien va dirigido y el lenguajea usar. Otra cosa importante es la presentación del trabajo.Definición.La química es la ciencia que trata de la composición, estructura, propiedades y transformaciones de la materia así como de las leyes que rigen esos cambios.Así, todo el universo es su objeto de estudio. La química pertenece al grupo de la ciencias fácticas(factuales) ya que estudia y mide hechos basados en la observación y la experimentación.Como toda ciencia experimental, sigue los pasos del método científico para llegar al establecimientode teorías y leyes que describen el comportamiento de la naturaleza. 1.1.1 Relación con otras ciencias (subdivisiones).El campo del estudio de la química es tan amplio, que no es posible, tan solo, interesarse en undominio particular y así contribuir a su desenvolvimiento. Por eso la química al relacionarse conotras ciencias, forma nuevas ramas o subdivisiones.Las subdivisiones de la química son: Química inorgánica: campo de la química que estudia las reacciones y propiedades de los elementos químicos y sus compuestos, excepto el carbono y sus compuestos, que se estudian en
    • la química orgánica. Históricamente la química inorgánica empezó con el estudio de los minerales y la búsqueda de formas de extracción de los metales a partir de los yacimientos. Química orgánica: rama de la química en la que se estudian el carbono, sus compuestos y reacciones. Existe una amplia gama de sustancias (medicamentos, vitaminas, plásticos, fibras sintéticas y naturales, hidratos de carbono, proteínas y grasas) formadas por moléculas orgánicas. Química analítica: una de las ramas más importantes de la química moderna. Se subdivide en dos áreas principales, el análisis cualitativo y el cuantitativo. El primero identifica los componentes desconocidos existentes en una sustancia, y el segundo indica las cantidades relativas de dichos componentes. Bioquímica: estudio de las sustancias presentes en los organismos vivos y de las reacciones químicas en las que se basan los procesos vitales. Esta ciencia es una rama de la Química y de la Biología. El prefijo bio-procede de bios, término griego que significa „vida‟. Su objetivo principal es el conocimiento de la estructura y comportamiento de las moléculas biológicas, que son compuestos de carbono que forman las diversas partes de la célula y llevan a cabo las reacciones químicas que le permiten crecer, alimentarse, reproducirse y usar y almacenar energía. Otros campos especializados son: ingeniería química, metalurgia, petroquímica, química nuclear. 1.2 Materia. 1.2.1 Características y manifestaciones de la materia.A la fecha no se ha podido obtener una definición clara y sencilla de lo que es materia. Algunosautores la definen como “todo lo que ocupa un lugar en el espacio y tiene masa”. Todo lo queconstituye el universo es materia.De acuerdo con las teorías de la física relativista, la materia se manifiesta como masa y energía, en unespacio y tiempo determinados. La existencia de materia en forma de partículas se denomina masa. A la energía actualmente se le considera como el principio de actividad interna de la masa.La materia y sus manifestaciones se rigen bajo las siguientes leyes: LEY DE LA CONSERVACIÓN DE LA MASA. Esta ley fue enunciada por Lavoisier y establece que “la masa no se crea ni se destruye, sólo se transforma”. LEY DE LA CONSERVACIÓN DE LA ENERGÍA. Esta ley fue enunciada por Mayer y establece que “la energía del Universo se mantiene constante de tal manera que no puede ser creada ni destruida y sí cambiar de una forma a otra”.
    •  LEY DE LA CONSERVACIÓN DE LA MATERIA. Esta ley se fundamenta en la Teoría de la Relatividad de Albert Einstein, y dice que “la cantidad de masa–energía se manifiesta en un determinado espacio-tiempo constante”. 1.2.2 Propiedades químicas y físicas, intensivas y extensivas de la masa.La masa se manifiesta ante nuestros sentidos como elementos, compuestos, mezclas, sólidos, líquidos y gases.La masa presenta propiedades generales (extensivas) y específicas (intensivas).Las generales, también llamadas extensivas, son aditivas y las presentan todas las substancias, puesdependen de la cantidad de masa en estudio y son: masa, peso, inercia, volumen, divisibilidad,porosidad; no nos sirven de mucho en cuanto a su valor para identificar una sustancia.Las propiedades específicas o intensivas sí nos sirven para identificar o diferenciar una sustancia deotra. Su valor es específico y no depende de la cantidad de masa en estudio. Algunos ejemplos son:temperatura, densidad, color, índice de refracción y reflexión, puntos de fusión y ebullición,poder oxidante y reductor, acidez, basicidad, dureza, solubilidad, elasticidad, presión vapor,etc.Estas propiedades también las podemos clasificar como: físicas (masa, peso, divisibilidad, durezaelasticidad, etc.) y químicas (poder oxidante, poder reductor, acidez, basicidad). 1.2.3 Estados de agregación.Se ha dicho que la masa se hace notar en forma de partículas y que al agregarse constituyen lassustancias. Si las partículas conservan determinada cantidad de energía cinética, existirá cierto gradode cohesión entre ellas. Los estados de agregación de la masa son: sólido, líquido y gas.Las sustancias en estado sólido ocupan un volumen definido normalmente tienen forma y firmezadeterminadas, la movilidad de las partículas que las constituyen es casi nula, existiendo una grancohesión, son incompresibles y no fluyen.Un líquido ocupa un volumen definido, pero es necesario colocarlo en un recipiente, y éste tomara laforma del recipiente, la movilidad y las fuerzas de cohesión son intermedias, son incompresibles yfluyen.Un gas no tiene forma ni volumen definidos, por lo que se almacena en un recipiente cerrado. El gastiende a ocupar todo el volumen del recipiente en que está confinado y sus partículas poseen granenergía cinética, presentando movimientos desordenados, fluye y es compresible. 1.2.4 Cambios de estado.
    • En nuestro ambiente y bajo ciertas condiciones, las substancias se presentan en uno de los estados deagregación antes mencionados, pero pueden cambiar de un estado a otro si las condiciones cambian.Estas condiciones son presión y temperatura. Los cambios de estado son:1. Fusión. Cambio que sufren las sustancias al pasar del estado sólido al líquido al incrementarse el calor.2. Evaporación. Cambio que se experimenta cuando un líquido pasa al estado de vapor o gas por incremento de calor.3. Sublimación. Es el paso del estado sólido al gaseoso o vapor sin pasar por el estado líquido, necesitándose calor. El cambio contrario, de gas o vapor a sólido, se llama degradación.4. Solidificación. Este cambio requiere de eliminar calor y ocurre cuando un líquido cambia al estado sólido.5. Condensación. Es el paso del estado de vapor al estado líquido. Este cambio también supone la eliminación de calor.6. Licuefacción. Es el paso del estado gaseoso al estado líquido. Además de eliminar calor debe aumentarse la presión para conseguir el cambio.La diferencia entre un vapor y un gas es que el vapor se condensa y el gas se licua. 1.3 Energía.Energia: es la capacidad de los cuerpos para realizar un trabajo. 1.3.1 Características y manifestaciones de la energía.Al hablar de la energía existen solo dos tipos: la potencial y la cinética. La energía potencial es la energía almacenada en una partícula debido a su posición dentro de un campo de fuerzas eléctricas magnéticas o gravitacionales.La energía cinética, es la energía que poseen los cuerpos en movimiento, o bien la energía debida a una partícula y en virtud de su velocidad.Con la transformación de estas dos, ocurren otras manifestaciones. Algunas manifestacionesenergéticas comunes son: solar, química, hidráulica, luminosa, eólica, mecánica, eléctrica, térmica ocalorífica, atómica o nuclear, geodésica, biomasa. 1.3.2 Beneficios y riesgos en el consumo de la energía.
    • Los beneficios que ofrecen el aprovechamiento de las diferentes manifestaciones son muchas, todasenfocadas hacia el confort y avance de la humanidad, lamentablemente muchos de estos beneficiosson a corto plazo ya que muchas de estas energías son no renovables, es decir, no se pueden producirde manera artificial.Actualmente con el consumo excesivo y al ritmo que lo estamos viviendo, estos materiales seagotarán y si no se buscan fuentes alternas de energía, la humanidad podría verse paralizada yretrocedería a tiempos antiguos. 1.3.3 Aplicaciones de la energía no contaminantes.La energía lumínica puede aprovecharse en las regiones donde la mayor parte del tiempo tiene díassoleados, ya que se han desarrollado equipos que utilizan esta energía.Las celdas solares son dispositivos capaces de convertir la energía lumínica en eléctrica, estáconstituida por una celda plana de material semiconductor que genera una corriente eléctrica, el flujode electrones es colectado y transportado por medio de contactos metálicos dispuestos en forma deenrejado. Un módulo fotovoltaico consiste en un grupo de celdas montadas en un soporte rígido einterconectadas eléctricamente, además es de fácil mantenimiento.Con la energía nuclear o atómica es posible suministrar calor y electricidad. Las centrales núcleoeléctricas son muy rentables, ya que es muy poca la cantidad de combustible (uranio) que necesita.En las núcleo eléctricas el calor se obtiene de la fusión del uranio.La biomasa se trata de toda materia orgánica que existe en la naturaleza (árboles, arbustos, algas,desechos orgánicos, animales, estiércol, etcétera) que sean susceptibles de transformarse en energíapor medio de fermentación anaerobia o en ausencia de aire y en un recipiente cerrado llamadodigestor. Con la biomasa pueden generarse combustibles sólidos, gaseosos y líquidos para producirvapor electricidad y gases (biogás). 1.4 Cambios de la materia. A las modificaciones o cambios que experimentan las sustancias bajo la acción de las diferentes formas de energía se les llama fenómenos. a) Cambio físico. Las modificaciones o cambios que no alteran la composición íntima de la sustancia, o que solo lo hacen de modo aparente y transitorio, reciben el nombre de fenómenos físicos.Estos fenómenos desparecen al cesar la causa que los origina, en su mayoría son fenómenosreversibles. Ejemplos son: dilatación de un metal, transmisión del calor, velocidad, aceleración, etc. b) Cambio Químico.
    • Cuando el cambio experimentado modifica permanentemente la naturaleza íntima de la sustancia y no es reversible, el fenómeno es de tipo químico.Antes y después del cambio se tienen sustancias diferentes con propiedades diferentes. Ejemplos son:digestión de los alimentos, corrosión de los metales, explosión de una bomba, revelado de unafotografía, combustión de un cerillo, fotosíntesis, fermentación. c) Cambio Nuclear. Fenómeno o cambio que consiste en la desintegración espontánea o decaimiento de los núcleosatómicos de ciertos elementos, acompañada de emisión de partículas o radiaciones electromagnéticas.Fue el científico Francés Becquerel el primero en descubrir la radioactividad al observar que eluranio producía un tipo de rayos capaz de atravesar varias hojas de papel negro e impresionar unaplaca fotográfica colocada al otro lado.El descubrimiento de la radiactividad artificial ha sido uno de los logros más importante de la físicanuclear, ya que actualmente se producen en la industria una gran variedad de elementos radiactivoscon múltiples aplicaciones en la investigación científica, la medicina, la agricultura y la industria.COMPLEMENTO DE LA PRIMERA UNIDADElementos, compuestos y mezclas.Las sustancias químicas se pueden clasificar en puras o no. Las sustancias puras se clasifican enelementos y compuestos. Los elementos son sustancias simples que no pueden descomponerse por métodos químicos ordinarios en algo más sencillo.En la actualidad se conocen 118 elementos, 92 de los cuales son naturales y el resto son artificiales.La mayoría son sólidos, cinco son líquidos en condiciones ambientales y doce son gaseosos. Variosde ellos se conocen desde tiempos muy antiguos, unos son abundantes, otros extremadamente raros,algunos son radiactivos y otros se han sintetizado en laboratorios con una vida promedio muy corta.Los elementos se representan por símbolos y están ordenados por un número y por sus propiedadesen un arreglo llamado tabla periódica.La mínima unidad material que puede existir representando las características de un elemento, es elátomo. Un elemento tiene átomos iguales entre si y diferentes a los de otro elemento. Los compuestos son sustancias que resultan de la unión química de dos o más elementos en proporciones definidas, se combinan de tal manera que ya no es posible identificarlos por sus propiedades originales e individuales y sólo una acción química los puede separar.
    • Los compuestos se representan por fórmulas y la mínima unidad material que puede existirrepresentando las características de los compuestos es la molécula. Algunos ejemplos son:agua(H2O), Oxido de calcio (CaO), cloruro de sodio(NaCl)Las mezclas son el resultado de la unión física de dos o más sustancias(elementos o compuestos) que al hacerlo conservan sus propiedades individuales. La composición de las mezclas es variable y sus componentes siempre podrán separarse por medios físicos o mecánicos.Las mezclas pueden ser clasificadas como: Homogéneas: son las que contienen la misma cantidad de sus componentes en toda la muestra, no es posible a simple vista ver los componentes, se encuentran tan íntimamente ligados que forman una sola fase. Heterogéneas: se distinguen fácilmente sus componentes y las diferentes fases que las forman, la composición no es constante en toda la muestra.Además existen mezclas sólidas, gaseosas y líquidas. Las mezclas en estados intermedios constituyenlos sistemas de dispersión. Mezclas Sólidas Líquidas Gaseosas Cemento Petróleo Aire Bronce Agua de mar Gas Granito Tinta Papel Refresco Pólvora Agua mineral Tierra AceroPara la separación de mezclas los métodos más comunes son:1. Decantación. Método para separar un sólido, de grano grueso e insoluble, de un líquido. Consiste en verter el líquido después que se ha sedimentado el sólido. Este método también se aplica en la separación de dos líquidos no miscibles y de diferentes densidades, utilizando un embudo de separación.2. Filtración. Permite separar un sólido insoluble (de grano relativamente fino) de un líquido. Para tal operación se emplea un medio poroso de filtración o membrana que deja pasar el líquido y retiene el sólido.3. Centrifugación. Método utilizado para separar un sólido (insoluble de grano muy fino y de difícil sedimentación) de un líquido. La operación se lleva a cabo en un aparato llamado centrífuga, en el que por medio de un movimiento de translación acelerado se aumenta la fuerza gravitacional provocando la sedimentación del sólido o de las partículas de mayor densidad.
    • 4. Destilación. Método que permite separar mezclas de líquidos miscibles, aprovechando sus diferentes puntos de ebullición. Este procedimiento incluye una evaporación y condensación sucesivas. Existen diferentes tipos de destilación, entre ellos los más comunes son: simple, fraccionada, por arrastre de vapor, al vacío, etc.5. Cristalización. Este método consiste en provocar la separación de un sólido que se encuentra disuelto en una solución; finalmente el sólido queda como cristal y el proceso involucra cambios de temperatura, agitación, eliminación del solvente, etc. Otra forma de lograr una cristalización es cuando una mezcla sólido – líquido contiene un solvente o líquido volátil.6. Evaporación. Es la operación por la cual se separa un sólido disuelto en un líquido y por incremento de temperatura hasta que el líquido hierve o ebulle y pasa al estado de vapor, quedando el sólido como residuo en forma de polvo seco. El líquido puede o no recuperarse.7. Sublimación. Método utilizado para la separación de sólidos, aprovechando que alguno de ellos es sublimable, pasando del estado sólido al líquido por incremento de temperatura.8. Diferencia de solubilidad. Permite separar sólidos de líquidos o líquidos de líquidos al contacto con un solvente que selecciona uno de los componentes de la mezcla. Este componente es soluble en el solvente adecuado y es arrastrado para su separación.9. Imantación. En este método se aprovecha la propiedad de alguno de los componentes de la mezcla para ser atraído por un campo magnético.10. Cromatografía. Este método consiste en separar mezclas de gases o de líquidos por el paso de éstas a través de un medio poroso y adecuado, con ayuda de solventes. El equipo para tal operación puede ser tan simple como una columna rellena, un papel o una placa que contiene un medio poroso, o bien un equipo tan sofisticado como lo es un cromatógrafo.