Robotic Spatial AR (로봇 공간증강현실 기술 소개)

  • 718 views
Uploaded on

발표처: …

발표처:
- version 2: SCCE 2014 (CAD/CAM학회 학술대회)
- version 1: SCCE Workshop 2011 (CAD/CAM학회 워크샵)

More in: Technology , Business
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
718
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
0
Comments
0
Likes
5

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. 한국CAD/CAM학회 2014년 정기 학술발표회 세션:Human-Machine Interaction 프로젝터-카메라 시스템을 활용한 사용자 상호작용 기술 공간증강현실 및 로봇으로의 응용을 중심으로 ! User Interaction Techniques based on Projector-Camera System Applications in Spatial AR and Integration with Robotics 이주행 ETRI 융합기술연구부문 책임연구원
  • 2. Agenda for SCCE 2014 • Projector-Camera System in SAR / RSAR - Related works including ETRI FRC - RSAR: path tracing, augmentation, IR Pen - Kinematics, Projection, Hybrid • Real Examples SAR: curve design, FTIR canvas, tracking performance • Control Issues in RSAR • Q&A 2 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 3. AR, SAR, & RSAR • AR - Augmented Reality • SAR - Spatial Augmented Reality • RSAR - Robotic Spatial Augmented Reality 3 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 4. AR, SAR, & RSAR AR SAR RSAR User views Monitor Real world Real world Augmentation over Camera image Real world Real world HW Components Camera, Monitor Camera, Projector Camera, Projector, Manipulator Mobility Static, Handheld, Wearable Static, Handheld, Wearable Dynamic, Autonomous 4 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 5. AR • Camera for Real World • Computer Graphics for Virtual World • Augmentation of the virtual objects (such as information, UI, ...) on the captured image of the real world • A user mainly watches a monitor screen. • Need to recognize objects in the camera image • Need to register the two imageries seamlessly 5 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 6. Examples of AR • Vuforia (Qualcomm AR SDK) 6 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 7. Examples of AR • Vuforia (Qualcomm AR SDK) 7 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 8. Examples of AR • World Lens (Quest Visual) 8 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 9. SAR • Projector + AR - mobility through pico projectors - A user mainly watches a real world rather than a display device. - Usually, projectors and cameras are not motion-controlled: static, hand-held, wearable - Images can be pre-warped before projection Similar with AR in recognition and registration are directly • Virtual objectsthe surface ofaugmented (or projected) on real objects. 9 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 10. Examples of SAR • Early works in SAR by Ramesh Raska (MIT) - iLamps: Geometrically Aware and Self-Configuring Projectors (SIGGRAPH 2003) - RFIG Lamps: Interacting with a Self-describing World via Photosensing Wireless Tags and Projectors (SIGGRAPH 2004) 10 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 11. • Examples of SAR Osaka University (1984~) 11 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 12. Examples of SAR • SixthSense (2009, MIT) 12 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 13. Examples of SAR • OASIS (2010; U Washington & Intel Labs) 13 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 14. Examples of SAR • OASIS (2010; U Washington & Intel Labs) 14 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 15. Examples of SAR • OASIS (2010; U Washington & Intel Labs) 15 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 16. Examples of SAR • RGB-D (2011; U Washington & Intel Labs) 16 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 17. Examples of SAR • Build Your World and Play in It (ISMAR 2010; UIUC) 17 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 18. Examples of SAR • Build Your World and Play in It (ISMAR 2010; UIUC) 18 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 19. Examples of SAR • LightSpace (UIST 2010; Microsoft) 19 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 20. Examples of SAR • LightSpace (UIST 2010; Microsoft) 20 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 21. Examples of SAR • OmniTouch (UIST 2011; CMU + Microsoft) 21 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 22. Examples of SAR • OmniTouch (UIST 2011; CMU + Microsoft) 22 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 23. • Examples of SAR IllumiShare (ACM CHI 2012; Microsoft) 23 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 24. • Examples of SAR Augmented Projector (Pervasive 2012; MSR UK) 24 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 25. Examples of SAR • MirageTable (ACM SIGCHI 2012; Microsoft) 25 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 26. Examples of SAR • MirageTable (ACM CHI 2012; Microsoft) 26 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 27. Examples of SAR • MirageTable (ACM CHI 2012; Microsoft) 27 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 28. Examples of SAR • Augmented Interactive Cake (Patent filed; 2012; Disney Research) 28 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 29. Examples of SAR • HideOut (ACM TEI 2013; Disney Research) 29 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 30. Examples of SAR • HideOut (ACM TEI 2013; Disney Research) 30 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 31. Examples of SAR • SAR in Automotive Manufacturing (Virtual Reality 2012; WCL, U South Australia) 31 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 32. Examples of SAR • “Projected Augmented Reality: Keeping Pace with Innovation” (Intel; 2012) 32 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 33. Examples of SAR • IllumiRoom (ACM SIGCHI 2013; Microsoft) 33 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 34. Examples of SAR • IllumiRoom (ACM SIGCHI 2013; Microsoft) 34 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 35. References • Book - O. Bimber and R. Raskar, Spatial Augmented Reality Merging Real and Virtual Worlds, 2005. A.K. Peters • Tutorial - SIGGRAPH Course 2008 35 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 36. RSAR • Robotics + SAR - Projectors and cameras can be mounted on robotic manipulators and/or mobile robot. - More DOFs: Kinematics + Image Warping New type of end effectors and constraints • • direction, position, shape, illumination intensity, ... soft collision = visibility and occlusion • Collaboration of multiple autonomous units. 36 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 37. Examples of RSAR • PixelFlex (IEEE Vis. 2001; MIT) 37 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 38. Examples of RSAR • Ubiquitous Display (HCII 2009; Ritsumeikan U & Korea U) 38 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 39. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 40. Examples of RSAR • LuminAR (2010; MIT) 40 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 41. Examples of RSAR • Beamatron (UIST 2012; Microsoft) 41 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 42. Examples of RSAR • Beamatron (UIST 2012; Microsoft) 42 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 43. Examples of RSAR PixelFlex (MIT, 2001) Ubiquitous Display (Ritsumeikan Univ. , 2006) LuminAR (MIT; 2010) Beamatron (Microsoft Research, 2012)
  • 44. Applications of RSAR • Interaction Techniques - as a component of multi-modal interaction • Precision Applications with Interactive Performance - 3D measurement 3D Imaging • Stereoscopic Photography 44 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 45. RSAR in ETRI • FRC: Future Robotic Computer • Multimodal UI (User Interface) - Speech, Gesture, TTS, Touch, ... • Intelligence - Situation awareness, Autonomous behavior, ... • Bridging the real and virtual worlds - Spatial AR + Robotics + Sensors 45 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 46. ETRI FRC 2012 !46 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 47. ETRI FRC 2012 !47 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 48. ETRI FRC 2012 • Major components for RSAR • RSAR = Robotic Spatial Augmented Reality Robotis Dynamixel MX-28 Optoma PK-320 Logitech HD Pro Webcam C920
  • 49. Pico Projectors • Microvision SHOWWX - Laser-based No need to control focus 10 lumen • Optoma PK-301 - DLP Manual focusing required 20 lumens; 50 on AC 49 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 50. Pico Projectors • Microvision SHOWWX+ - Laser-based No need to control focus 15 lumens • Optoma PK-320 - DLP Manual focusing required 25~50 lumens; 100 on AC 50 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 51. Pico Projectors 51 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 52. Pico Projectors 52 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 53. Pico Projectors 53 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 54. Pico Projectors 54 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 55. Pico Projectors 55 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 56. FRC Kinematic Features • 5 Motors: (tilt + pan) x 2 + (center pan) - Redundancy in Pan Rotation 56 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 57. FRC Kinematic Features • 5 Motors: (tilt + pan) x 2 + (center pan) - Redundancy in Pan Rotation 57 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 58. RSAR Real Experiments • RSAR (with Ritsumeikan Univ.) - IK path following - Augmenting details - Interaction with IR Pen • SAR - Planar curve design (ETRI) - FTIR Canvas (ETRI) - 3D Tangram (with Kookmin Univ.) 58 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 59. • RSAR IK Path Following Jacobian IK to follow a path (with Ritsumeikan U) 59 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 60. RSAR Augmenting Details Image in the world: Body outline Image from R Prj: Skeleton 60 Image from L Prj: Vessels Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 61. RSAR Augmenting Details • Highlighting with details (with Ritsumeikan U) 61 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 62. RSAR Augmenting Details • Highlighting with details (with Ritsumeikan U) 62 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 63. • RSAR + IR Pen Interaction example (with Ritsumeikan U) 63 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 64. • SAR Simple Game Planar marker-based design game (ETRI) 64 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 65. SAR Simple Game • Planar curve design (ETRI) 65 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 66. SAR Markerless Tracking 66 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 67. • SAR FTIR Canvas TIR (total internal reflection) 67 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 68. • SAR FTIR Canvas FTIR (frustrated total internal reflection) 68 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 69. SAR FTIR Canvas 69 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 70. SAR FTIR Canvas 70 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 71. SAR FTIR Canvas • 71 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 72. ETRI Tangram Example
  • 73. Verification of Homography Physical Projected Tangram Tangram
  • 74. Verification of Homography Physical Tangram Projected Tangram
  • 75. Verification of Homography Projected Tangram
  • 76. Verification of Homography Physical Projected Physical Tangram Tangram Tangram
  • 77. Verification of Homography Physical Tangram with Projection
  • 78. Verification of Homography Projected Tangram Piece
  • 79. Verification of Homography Physical Projected Physical Tangram Tangram Tangram
  • 80. Verification of Homography Physical Tangram with Projection
  • 81. ETRI SAR Tangram Physical Tangram with Projection
  • 82. RSAR Control Issues • Kinematic Control - Inverse Kinematics • Projection Control - Inverse Projection + Image Pre-warping • Hybrid Control - Current: Kinematics + Projection Next: Kinematics + Projection + Object Recognition 82 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 83. Forward Control Kinematics Projection K+P Input Parameters - angles - displacements Image + Parameters - internal, external Image + Parameters - internal, external Process Transformation - rigid Transformation - perspective Transformation - rigid - perspective Output End Effector in a position Projected Image on a surface Projected Image on a surface Exception Collision - physical objects Occlusion - light - physical objects Occlusion + Collision 83 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 84. Backward Control Kinematics Input Projection K+P End Effector in a specific position Projected Image on a specific surface with a specific condition Projected Image on a specific surface with a specific condition Process Inverse Kinematics Inverse Projection IK + IP Output Parameters - angles - displacements Image + Parameters - internal, external Image + Parameters - internal, external Constraint Collision - physical objects Occlusion - light - physical objects Occlusion + Collision 84 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 85. More Constraints • Geometry - correct geometry without distortion - uniform intensity over the surface - clear image with minimum blurring - maximum visibility and minimum shadowing • Photometry • Image • Visibility 85 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 86. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 87. • Kinematics Kinematic Setup 87 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 88. • Kinematics Kinematic Setup 88 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 89. Forward Kinematics • Input - k: angles of each joint • Output - q: position / orientation of the end-effector • Processing - A: rigid body transformation: translation + rotation - q = A(k) 89 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 90. • Forward Kinematics Formulation: A 90 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 91. • Forward Kinematics Formulation: A 91 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 92. Forward Kinematics 92 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 93. Inverse Kinematics • Input - q: position / orientation of the end-effector • Output - k: angles of each joint • Processing - A-1: inverse of A; generally, no analytic form. - k = A-1(q) 93 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 94. • Inverse Kinematics Setup 94 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 95. • Inverse Kinematics Partially Analytic IK - To satisfy that the ray intersects at the base surface, the zcoordinate of the end-effector should be zero: z = 0. - The length of the ray can be parameterized with tilt angle 100 80 60 40 20 -1.5 95 -1.0 -0.5 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 96. • Inverse Kinematics Partially Analytic IK - To satisfy that the ray intersects at the base surface, the zcoordinate of the end-effector should be zero: z = 0. - The length of the ray can be parameterized with tilt angle 96 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 97. • Inverse Kinematics Partially Analytic IK -0.8 -1.0 -1.2 -1.4 -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 -0.8 -1.0 -1.2 -1.4 97 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 98. • Inverse Kinematics Partially Analytic IK 98 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 99. • Inverse Kinematics Partially Analytic IK 99 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 100. • Inverse Kinematics Incremental Differential IK - Jacobian of transformation matrix: J = dA/dt - Inverse of Jacobian: J-1 - Jacobian Transpose: JT 100 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 101. • Inverse Kinematics Inverse of Jacobian: J-1 101 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 102. • Inverse Kinematics Inverse of Jacobian: J-1 - unstable near limit angles 102 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 103. • Inverse Kinematics Jacobian Transpose Method: JT 103 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 104. • Inverse Kinematics Jacobian Transpose: JT - a bit slower convergence, but more stable 104 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 105. • Inverse Kinematics Jacobian Transpose: JT - a bit slower convergence, but more stable 105 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 106. Projection 106 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 107. Source Image Projector Internal Parameters Projector External Parameters Projector Target Image Forward Projection World Geometry World Knowns Unknowns
  • 108. Target Image World Source Image Projector External Parameters Projector Inverse Projection Type 1 Internal Parameters Projector Geometry World Unknowns Knowns
  • 109. Source Image Projector Target Image World External Parameters Projector Internal Parameters Projector Unknowns Inverse Projection Geometry World Type II Knowns
  • 110. Example of Inverse Projection (1) • How to project the largest "undistorted" rectangle to a viewer with a single projector? - Inscribed Rectangle Anamorphic Illusion Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 111. Largest Aligned Inscribing Rectangle ! ! ! 111 Joo-Haeng Lee (joohaeng at etri.re.kr) !
  • 112. Anamorphic Illusion 112 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 113. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 114. Artwork 1 Piet Mondrian, Composition A, 1923 Oil on canvas (Galleria Nazionale d'Arte Moderna e Contemporanea, Rome) Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 115. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 116. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 117. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 118. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 119. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 120. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 121. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 122. Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 123. Demo • Simulation in Mathematica - Maximum Inscribing Rectangle inside a Projected Quadrilateral 123 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 124. Example of Inverse Projection (2) • Projector Pose Estimation - Given an arbitrary convex quadrilateral, find external parameters of a projector to project it from a certain rectangle: - Which convex quadrilateral cannot be projected from a rectangle? - How to modify a quadrilateral to be projectable? Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 125. Quiz #1 Assume that you have a hand-held projector which can accept an rectangular source image. Which of the following convex quadrilaterals is projectable from your projector? (a) (c) Rhombus Trapezoid___ (b) Parallelogram (d) Isosceles Trapezoid 125 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 126. Type of Quads 126 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 127. Quiz #2 (a) (b) (c) (d) 127 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 128. Quad: Configuration • Ext Params - center of projection • Int Params - pc Qs filed-of-view v2 • Source Quad - rectangle (cf) aspect ratio - convex quadrilateral v3 ms v1 m • Projected Quad v0 • Length-related coefficients: α , β  and γ  for each diagonal i 128 i i Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 129. Quad: Analytic Solution • Constraint 1: cop ! d0 = ! cosθ 0 α0 = cosθ1 = d1 α1 pc y1 y0 • Constraint 2: fov ! tanψ 0 = ! tanθ 0 β0 = tanθ1 β1 Qs ms v2 y0y1 q1 = tanψ 1 v3 m q0 v1 • 2 Eqs and 2 Unknowns - Existence of solution? v0 Geometric meaning? 129 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 130. Quad: Analytic Solution Equation • Constraint 1: cop ! d0 = ! cosθ 0 α0 = cosθ1 cosθ 0 = ± = d1 α1 A= • Constraint 2: fov ! tanθ 0 ! β0 tanψ 0 = = tanθ1 β1 B= = tanψ 1 • 2 Eqs and 2 Unknowns - C= Existence of solution? C 2 −1 A B −1 2 α1 α0 β1 β0 γ1 γ0 Coefficients Geometric meaning? 130 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 131. Quad: Analytic Solution Equation Coefficient Conditions cosθ 0 = ± A ≥ 1,#B ≤ 1, C ≤ 1 OR 2 2 2 A= A ≤ 1,#B ≥ 1, C ≥ 1 2 2 2 B= C= C 2 −1 A B −1 2 α1 α0 β1 β0 γ1 γ0 Coefficients 131 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 132. A ≥ 1,#B ≤ 1, C ≤ 1 OR 2 2 2 A 2 ≤ 1,#B 2 ≥ 1, C 2 ≥ 1 Quiz #2 Diagonal Parameters: (d 2 , ρ, t 1 , t 2 ) 2 2 2 Solution Coefficients: ! A ,$B , C ' (a) (b) (1.3, π / 2, 0.75, 0.3) (1.3, π / 2, 0.6, 0.2) (0.3, 1.5, 0.4) (c) (12.0, 0.11, 1.33) (d) Projectable (1.3, π / 2, 0.6, 0.3) (1.3, 0.7, 0.6, 0.2) (12.0, 0.11, 1.33) 132 (3.1, 0.3, 0.8) Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 133. • Hybrid Control Inverse Kinematics + Inverse Projection 133 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 134. • Scenario A "big" image is augmented with a partial details. 134 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 135. • Scenario A "big" image is augmented with a partial details. 135 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 136. • Scenario A "big" image is augmented with a partial details. 136 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 137. • Scenario A "big" image is augmented with a partial details. 137 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 138. • Scenario A "big" image is augmented with a partial details. 138 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 139. • Scenario A "big" image is augmented with a partial details. 139 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 140. • Scenario A "big" image is augmented with a partial details. 140 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 141. • Scenario A "big" image is augmented with a partial details. 141 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 142. Wrap Up: Controls Inverse Kinematics Inverse Projection 142 Hybrid Control Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 143. Summary • Projector-Camera System in SAR / RSAR - Related works including ETRI FRC • Real Examples - RSAR path tracing, augmentation, IR Pen - curve design, FTIR canvas • Control Issues in RSAR - Kinematics, Projection, Hybrid 143 Joo-Haeng Lee (joohaeng at etri.re.kr)
  • 144. Q&A joohaeng at etri dot re dot kr