Lux Research, Inc. Page 1
The Bio-based Chemical Industry through 2030
By Andrew Soare, Analyst, and Kalib Kersh, Analyst
...
Lux Research, Inc. Page 2
Graph: Bio-based Material and Chemical Production Capacity Growth Through 2015
Source: Lux Resea...
Lux Research, Inc. Page 3
Capacity growth in Europe
Across Europe, manufacturing capacity for bio-based materials and chem...
Lux Research, Inc. Page 4
opportunity for retrofit for biochemical producers. At these facilities, feedstock supply is alr...
Lux Research, Inc. Page 5
“Drop-in” plastics and chemicals are familiar and fungible, yet renewable. In contrast to incumb...
Lux Research, Inc. Page 6
Ethylene Polyethylene, EPDM Dehydration of ethanol Bio-based ethanol Dow & Mitsui,
Braskem
Ethyl...
Lux Research, Inc. Page 7
bio. Ultimately, bio-based chemicals must compete with their petro-derived counterparts on two t...
Lux Research, Inc. Page 8
Graph: Global Supply vs. Demand for Sugar crops through 2030
Source: Lux Research
Table: Sugar C...
Lux Research, Inc. Page 9
As biochemical producers aim to compete on costs, cheaper feedstock may hold that key, possibly
...
Upcoming SlideShare
Loading in …5
×

2014 the bio based chemical industry through 2030 - lux research

4,035 views

Published on

Drawing from Lux Research’s ongoing Bio-based Materials and Chemicals Intelligence service, this whitepaper covers commercial scale-up, new technologies, and new feedstocks, as well as financing and partnering trends in the evolving bio-based chemicals space.
(http://www.greenpowerconferences.com/)

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
4,035
On SlideShare
0
From Embeds
0
Number of Embeds
19
Actions
Shares
0
Downloads
171
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

2014 the bio based chemical industry through 2030 - lux research

  1. 1. Lux Research, Inc. Page 1 The Bio-based Chemical Industry through 2030 By Andrew Soare, Analyst, and Kalib Kersh, Analyst Lux Research The bio-based chemicals industry is scaling to commercial levels – driven by corporate partnerships, private investment, and innovative technologies. As producers scale, competing on cost and performance are essential to have a shot at taking market share from petroleum derived chemicals. Drawing from Lux Research’s ongoing Bio-based Materials and Chemicals Intelligence service, this whitepaper will cover commercial scale-up, new technologies, and new feedstocks, as well as financing and partnering trends in the evolving bio-based chemicals space. Ramping scale to compete with conventional chemicals Competing against petrochemically-sourced chemicals like polyethylene, di-acids, di-ols, and polyesters produced in the tens to hundreds of millions of tons each, bio-based materials and chemicals have evolved from lab to commercialization at scale, totaling in excess of 4 million tons of production capacity per year. To date, the market for bio-based materials and chemicals has been miniscule – less than a percent of the fossil-derived materials and chemicals they are intended to replace. But several strong forces – consumer preference for environmentally-friendly and biodegradable products, corporate commitment to renewable and sustainable brand values, and government mandates – keep driving development in the space. Up to now, bio-based material and chemical developers have grappled with issues like quality, consistency, and cost. With many of these technical hurdles directly addressed thanks to advances in fields like synthetic biology, developers are turning to business issues, like forming partnerships up and down the supply chain, as Unilever and Solazyme have done, to name one example. Most importantly today, the technologies for converting biomass into this wide range of compounds have now matured to the point that their cost and performance are comparable to incumbent materials for which they can substitute. Today total bio-based material and chemical capacity stands just below 5 million metric tons, but will grow to around 8 million metric tons by 2015.
  2. 2. Lux Research, Inc. Page 2 Graph: Bio-based Material and Chemical Production Capacity Growth Through 2015 Source: Lux Research While bio-based chemicals with four carbons or more have received most of the limelight - think biobutanol, succinic acid, butadiene, and isoprene developers, just to name a few chemicals - rock- bottom natural gas prices have forced bio-PE producers to shift focus elsewhere. The Dow Chemical and Mistui joint-venture postponed its Brazilian bio-polyethylene (bio-PE) project. It is currently farming 20,000 hectares of sugarcane, with the first harvest expected in 2014, which will still be used to produce bio-ethanol, but it has delayed the second phase of the project, converting ethanol into bio-PE. Though the companies blame rising capex and opex and legislative uncertainty for the delay, Dow has also stated it will be focusing on shale gas projects in the Americas in the near future as the company restarts ethylene production in Louisiana and builds an additional ethylene plant in Texas due to come online in 2017. Braskem also delayed two bio-PE plants last July with its planned bio-PP also affected. One of the early innovators in bio-based polyolefins, Braskem first introduced bio-PE in 2010, and planned to co- locate the plant next to a sugarcane mill and distillery. Since many of the processes scaling up are new to the world processes, project finance remains an issue, as financiers are reluctant to invest in unproven, risky new technologies. However, several creative financing mechanisms are emerging, including bond finance, government loan guarantees, and corporate investment from downstream partners. Government support is uncertain at best, and countries like Thailand and Italy are aggressively pursuing bio chemicals as key domestic growth markets and job creators.
  3. 3. Lux Research, Inc. Page 3 Capacity growth in Europe Across Europe, manufacturing capacity for bio-based materials and chemicals climbed from more than 940,000 tons to 1.2 million metric tons from 2006 to 2011, a change of 4.7%. From 2012 to 2016, we expect capacity to increase 16% to 2.5 million metric tons. The countries in this region usually have science and engineering expertise, a powerful industrial base, huge demand stimulated by government mandate, and consumers who prefer renewable. But biomass availability will eventually be limiting, in turn capping the development of biorefineries across the continent. However, progress on developing new, highly efficient configurations of biomass production is predicted to make an impact. With tremendous demand from internal markets, Europe’s capacity expansion will continue until biomass limits are reached. Proximity to regions with forecasted biomass surplus will lead to importation of biomass. With long-standing bio-based industries, including forestry and agricultural value chains, investment from the EU level down to the regional level plays significantly into the development of the industry. For instance, Lux Research has noted Germany, Italy, and the Netherlands as hotspots, though biorefineries and biomass processing facilities are found wherever feedstocks are grown and harvested. In these countries, some of the largest projects in the region produce cellulose-derived chemicals and starch-based plastics. More mature companies like Lenzing, founded in 1892, as well as relative upstarts Novamont, founded in 1990, bring this capacity on-line. Even countries with fewer plants, like France and Spain, host first-of-a-kind technology producing chemicals like bio-based polyolefins developed by Global Bioenergies and succinic acid in one instance by a partnership of BASF and Purac. Substantial markets and a history of bio-based production are not enough to attract technology developers, as developers are attracted to plentiful sources of affordable olechemical and sugar feedstocks in North and South America. However, Europe has immense biomass production of its own. In 2020, 726.2 million metric tons of primary sugar crop biomass is estimated to be available. In comparision, North America is forecasted to produce 808 million metric tons at the same time. Relation to biofuels industry The biofuels sector shares many of the same feedstocks and technologies as the biochemicals sector, though the biofuels industry is at much larger scale today. Because of volatile feedstock pricing and inconsistent government support, among other issues, a large share of biofuel production capacity sits idle today. Recently in the U.S., many corn ethanol producers, such as Valero, had to idle production facilities as high corn prices prevented the plants from turning a profit. Underutilization has been rampant in the biodiesel industry in Europe, North America, and South America as well. While these underutilized biofuel producers are losing money for operators today, they represent a great
  4. 4. Lux Research, Inc. Page 4 opportunity for retrofit for biochemical producers. At these facilities, feedstock supply is already available, and much of the process technology can be leveraged in retrofit. Elevance, for example, is retrofitting underutilized biodiesel assets in the U.S., and is exploring further relationships in Asia. Elevance produces specialty chemicals from plant oils via a metathesis reaction. Similarly, Gevo and Butamax are both retrofitting corn ethanol plants to make isobutanol. Other companies are also exploring bolt-on approaches, like cellulosic bolt on units to increase the feedstock throughput of existing corn ethanol plants by tapping into corn stover. These various efforts can lower capital costs of commercial facilities, and therefore be a less risky investor for financiers. Table – Biofuel production capacity in leading countries Country Ethanol Capacity Biodiesel Capacity U.S. 14.9 billion gallons 3.1 billion gallons Brazil 11.3 billion gallons 1.4 billion gallons China 1.7 billion gallons 940 million gallons Indonesia 810 million gallons 1.2 billion gallons Germany 490 million gallons 1.5 billion gallons Spain 370 million gallons 1.3 billion gallons France 520 million gallons 710 million gallons India 700 million gallons 210 million gallons Italy 170 million gallons 830 million gallons Canada 510 million gallons 420 million gallons Downstream: Emerging technologies and companies likely to play a role through 2030 Today, bio-based materials mainly penetrate packaging, and only at a miniscule level. Renewable is a “nice-to-have,” but end-users don’t always know how to value it and aren’t willing to pony up for a premium, when faced with an equivalently-performing alternative. Low carbon is difficult to assess; just because it’s bio, does not mean it’s better. Metabolix seemed convinced the market would prize its PHA, but with performance in use similar to incumbents, processing idiosyncrasies, and rumors of unreasonably high pricing and unlikely economic viability, ADM severed its ties to its JV with Metabolix. Consistently, bio-based polymers don’t score high enough on a range of key performance metrics. Natural, disposable, or biodegradable plastics must fight their entrenched reputations as low performance materials. The thrust of innovation today is around bio-based routes to a range of platform chemicals. These platform chemicals – ranging from succinic acid, to propanediol, to terephthalic acid – are converted into a range of downstream products. The downstream products are identical to their petro-derived peers, and are therefore called “drop-in” chemicals.
  5. 5. Lux Research, Inc. Page 5 “Drop-in” plastics and chemicals are familiar and fungible, yet renewable. In contrast to incumbent bioplastics like PLA, new biomanufacturing technologies enable manufacturers to produce bio-based materials that are chemically identical to fossil polymers. For example, the much-hyped successor to ethanol, n-butanol, is a product of both the classic ABE fermentation using Clostridia species and new synthetic biology-enabled pathways in yeast and Escherichia coli. Cathay Biotechnology, Green Biologics, Cobalt, and several smaller players produce with the ABE process. Similarly, Solvay is dehydrating ethanol to ethylene, which could also be used to make polyvinyl chloride (PVC) or polyethylene, as well as a plethora of other chemicals; for example, a Novozymes / Braskem partnership converts ethanol- derived ethylene into propylene to produce PP. Dow manufactures epichlorohydrin from the biodiesel secondary product glycerine; Genencor (now DuPont) and GlycosBio are developing synbio routes to isoprene; Global Bioenergies also uses synthetic biology to make isobutene, while Gevo and Lanxess use chemical methods to convert isobutanol to the rubber precursor. PURAC and Galactic partnerships ferment the bulk of lactic acid from the lowest-cost sugars, such as corn sugar in the U.S. Much of lactic acid’s capacity has been devoted to production of precursors for PLA, but this versatile molecule – as is true with all of the platform chemicals and some of their derivatives, too – transform into a variety of other valuable targets, largely offsetting risk in bringing production capacity online, since plants have an array of products to feed into rapidly changing markets. A multitude of platform technologies are emerging, which allows incremental investment in research and scale-up to yield completely new products. Isoprenoids are the products of secondary metabolism, with multiples of five carbons going through the metabolic intermediate of farnsyl pyrophosphate (FPP), with platforms in different strains commercialized by Allylix and Isobionics that produce the same two products set to disrupt the flavors markets by providing consistent, lower-cost versions of flavoring favorites with existing supply that is extremely volatile. Amyris takes the FPP central metabolic intermediate in completely different directions, producing fuels, personal care products, and industrial lubricants. Table: Existing and Potential Routes to Bio-based Drop-in Monomers Monomers Polymers Route Bio-based Feedstock Companies Acrylic Sodium polyacrylate, ACM, PVAc Catalytic conversion of 3- hydroxypropanic acid Bio-based 3- hydroxypropanoic acid OPX Bio, Myriant Methyl methacrylate PMMA Bio-based acetone and hydrogen cyanide, oxidation of isobutylene Bio-based acetone or isobutylene; bio-based isobutyric acid Mitsubishi Rayon Acrylonitrile ABS, Styrene – acrylonitrile, polyacrylonitrile Catalytic ammoxidation of propylene Bio-based propylene None to date Butadiene ABS, synthetic rubber, BR, SBR Fermentation of sugar, conversion from BDO Sugar Genomatica
  6. 6. Lux Research, Inc. Page 6 Ethylene Polyethylene, EPDM Dehydration of ethanol Bio-based ethanol Dow & Mitsui, Braskem Ethylene EVA Dehydration of ethanol Bio-based ethanol None to date Ethylene glycol PET Catalytic conversion of sugars Sugar, glycerin ADM, S2G BioChem Isobutene Butylene rubber Dehydration of isobutanol Bio-based isobutanol Gevo Isobutene Butylene rubber Fermentation of sugar Sugar Global Bioenergies Isoprene Isoprene rubber Fermentation of sugar Sugar Aemetis, GlycosBio, Amyris, Danisco, Global Bioenergies, Propylene Polypropylene Disproportionation of ethylene Bio-based ethylene Braskem, Global Bioenergies Styrene SBR, PS Fermentation of sugar Sugar University of Arizona Terephthalic acid PET Oxidation of p-xylene Bio-based p-xylene Toray Terephthalic acid PET Synthesis from muconic acid Bio-based muconic acid Amyris, Myriant Tetrafluoroethy lene PTFE Fluoronation of ethylene Bio-based ethylene None to date Vinyl acetate EVA Condensation of ethylene and acetate Bio-based ethylene and/or bio-based acetate None to date Vinyl chloride PVC Chlorination of ethylene Bio-based ethylene Solvay Source: Lux Research Sometimes, bio-based really is better. Bio-lubricants are a hot application, lending lubricity, oxidative stability, and performance at hot and low temperatures that exceed incumbent fossil-derived base oils. Biosynthetic Technologies (once called LubriGreen), Amyris, Segetis, and Green Earth Technologies are just a few of the companies leading the push. For dielectric fluids, Solazyme and Dow collaborate, and bio-based plasticizers have begun to flow, especially to “green” PVC since pressure is mounting to phase out phthalates. Amyris, Segetis, Dow and Teknor Apex, and Georgia Gulk and Galata Chemical all are making plasticizers, some especially for PVC. Shrewd developers focus on applications with high additional value in the use of bio-based, not just on renewability, low-carbon, and bio for the sake of
  7. 7. Lux Research, Inc. Page 7 bio. Ultimately, bio-based chemicals must compete with their petro-derived counterparts on two things: cost and performance. The companies that have the best pathways to price and performance competition continue to raise capital, secure key corporate partnerships, and scale initial production facilities. Table: Example private equity / venture capital deals in 2012 Company Amount Date Elevance $104 million July 2012 BioAmber $30 million February 2012 Joule Unlimited $70 million January 2012 Allylix $18.5 million March 2012 Genomatica $41.5 million August 2012 Proterro $3.5 million December 2012 Upstream: Feedstock issues and opportunities Today, sugar crops are the largest supplier to the biofuel and biochemical industry – dominated by sugarcane, corn, and wheat. There are many other sources of demand for sugar crops, food and feed being the two main ones. We measured the production of cassava, cereal, corn, potatoes, sorghum, sugar beet, sugar cane, sugar crops, sweet potatoes, and wheat as the key sugar crops for bioproducts. We compared this to the overall consumption of sugar crops to feed into biofuel and biochemical capacity. Today, large percentages of Brazil’s sugarcane and the U.S.’s corn are used to make ethanol. In 2010, 16.4% of total sugar crops were used to make fuels and chemicals, and that number will roughly double to reach a 32.2% share in 2030 in the current market model. Using nearly a third of global sugar supply for fuel and chemicals will greatly stress supplies, but what’s worse is that in some regions, demand will completely outstrip supply in 2030 – forcing those countries to turn to imports or new crops to meet growth goals. Finding the key regions where this stress exists identifies the key locations for new types of feedstocks.
  8. 8. Lux Research, Inc. Page 8 Graph: Global Supply vs. Demand for Sugar crops through 2030 Source: Lux Research Table: Sugar Crops Supply vs. Demand Regionally 2010 2020 2030 Region Demand (Mln tons) Supply (Mln tons) % Demand (Mln tons) Supply (Mln tons) % Demand (Mln tons) Supply (Mln tons) % Penetration Scale Africa 0.4 371.4 0% 23.0 452.7 5% 28.0 551.9 5% Low High ANZ 7.5 60.1 12% 13.7 73.3 19% 16.0 89.3 18% Low Low ASEAN 18.3 263.9 7% 73.2 321.7 23% 201.1 392.1 51% High High Central Asia - 29.6 0% - 36.0 0% - 43.9 0% Low Low East Asia 0.1 8.7 2% 10.5 10.6 99% 14.1 12.9 109 % High Low Europe 33.1 595.7 6% 58.4 726.2 8% 124.9 885.3 14% Low High Middle East - 48.2 0% 0.1 58.7 0% 0.1 71.6 0% Low Low North America 145.4 663.0 22% 169.7 808.2 21% 315.6 985.3 32% High High North Asia 18.8 581.5 3% 42.4 708.9 6% 78.1 864.1 9% Low High South America 428.2 993.7 43% 797.9 1,211.3 66% 1,159.6 1,476.5 79% High High South Asia 31.1 550.3 6% 42.2 670.8 6% 56.9 817.7 7% Low High Source: Lux Research
  9. 9. Lux Research, Inc. Page 9 As biochemical producers aim to compete on costs, cheaper feedstock may hold that key, possibly delivered by cellulose-to-sugars processes. As sugar prices explode in key geographies, many bio-based developers are focusing on acquiring cheaper feedstock, and in particular the range of processes to convert waste biomass into fermentable sugars. Cellulosics could provide the low-cost feedstock that could dramatically alter the cost structure of producing bio-based chemicals, since a large fraction of the cost of production comes from feedstock expense. Companies like Virdia, BlueFire Renewables, Renmatix, and Beta Renewables are racing to be the low-cost sugars producers for ethanol and bio- based chemicals. Today, relatively small amounts of cellulosic material are used to make biofuels. In fact, less than 3 million tons of cellulosic materials are used to make biofuels worldwide. In the biochemicals space, however, there is a larger demand for cellulosic material to make a range of cellulose fibers and acetates. 42% of all cellulosic biomass demand, or 3.4 million tons, comes from Europe, where cellulose based materials are prolific. For example, Lenzing is producing over 500,000 tons per year of cellulose acetate in Germany. North America consumes just over 1.5 million tons of cellulosic biomass, over 46% of this coming from woody biomass. ASEAN has the third highest consumption of cellulosic biomass, consuming 1.3 million metric tons annually. Though cellulosic feedstocks are often hailed as the saving grace of an alternative fuel industry struggling to find a cheap and non-competitive feedstock, there are a number of issues with cellulosic biomass. It can be difficult to aggregate and expensive to convert, and several developers have struggled to make the economics work through gasification or conversion to sugars and subsequent fermentation. Other non-biomass options exist as well, tapping into cheap (sometimes free) feedstocks like CO2, sludge, and municipal waste. LanzaTech, for example, is converting flue gas from steel mills into ethanol, as companies like Novomer and Bayer attempt to convert CO2 into polymers. Capitalizing on cheap and available feedstock is the next frontier for the bio-based industry, and will be instrumental as the industry scales and increases its strain on biomass value chains. About the Authors Andrew Soare leads the Alternative Fuels Intelligence service at Lux Research and Kalib Kersh leads the Bio-based Materials and Chemicals Intelligence service. Lux Research provides strategic advice and ongoing intelligence for emerging technologies. Leaders in business, finance and government rely on Lux Research to help them make informed strategic decisions. Through their unique research approach focused on primary research and their extensive global network, they deliver insight, connections and competitive advantage to their clients. Visit www.luxresearchinc.com for more information.

×