Is there an ideal farming system to maximise stored soil water in the Eastern Australian, Vertosol dominated, semi-arid sub tropics? Jeremy Whish
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share

Is there an ideal farming system to maximise stored soil water in the Eastern Australian, Vertosol dominated, semi-arid sub tropics? Jeremy Whish

  • 3,677 views
Uploaded on

A presentation at the WCCA 2011 event in Brisbane.

A presentation at the WCCA 2011 event in Brisbane.

More in: Education , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
3,677
On Slideshare
3,677
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
2
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Is there an ideal farming system to maximisestored soil water in the Eastern Australian,Vertosol dominated, semi arid sub tropics?Jeremy Whish
  • 2. Key Messages • Complex systems analysis does not need to be done with a single complex model • Reducing complex systems to simple messages is useful • A single picture can capture the learning of 1000 simulations • Risk and Variability should be managed at both the farm and paddock(field) levelsCSIRO. Using models to support farmer decision-making
  • 3. Background Brisbane Walgett SydneyCSIRO. Using models to support farmer decision-making
  • 4. BackgroundCSIRO. Using models to support farmer decision-making
  • 5. The Initial Problem • Could APSIM be used to identify if our current farming system is matched to our environment ?CSIRO. Using models to support farmer decision-making
  • 6. 0 200 400 600 800 1000 -200 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981CSIRO. Using models to support farmer decision-making 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 single wheat paddock gross margins 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 wheat_sf 2007
  • 7. The starting point • How much rainfall ? • When does it fall ? • How much do you need ? • How variable is it ?CSIRO. Using models to support farmer decision-making
  • 8. Rainfall (mm) Probability of exceedence (%) 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 1957 1994 1940 ave= 208 1902 100 2002 1982 1914 1965 1911 1929 1927 2006 1905 1928 1919 1946 1972 200 1977 1926 1953 1980 1941 1937 2004 1915 1967 1932 1944 1908 300 1918 Total rainfall (mm) 1936CSIRO. Using models to support farmer decision-making 1922 1951 2003 1943 2001 1961 1987 1900 1923 1975 400 1935 1992 1976 2007 2009 1945 1974 1904 1968 1960 1997 1912 1990 Rainfall (mm) 1910 1971 1959 1989 1907 0 100 200 300 400 1970 1952 1913 1931 1900 1938 1901 1902 1903 ave= 208 1948 1904 1905 1999 1906 1907 1991 1908 1909 1963 1910 1911 1984 1912 1913 1958 1914 1915 1917 1916 1917 1918 1919 1985 1920 How much in crop rainfall (winter) 1964 1921 1922 1996 1923 1924 1956 1925 1926 1930 1927 1928 1934 1929 1930 1931 1932 1909 1933 1962 1934 1935 1995 1936 1937 1979 1938 1939 1901 1940 1941 1942 1943 2005 1944 1966 1945 1946 1988 1947 1948 1939 1949 1950 1954 1951 1952 1986 1953 1954 1955 1956 1947 1957 1973 1958 1959 1925 1960 1961 2000 1962 1963 1993 1964 1965 1969 1966 1967 1968 1969 1924 1970 1942 1971 1972 2008 1973 1974 1998 1975 1976 1903 1977 1978 1979 1980 2010 1981 1921 1982 1983 1978 1984 1985 1916 1986 1987 1983 1988 1989 1981 1990 1991 1992 1993 1906 1994 1949 1995 1996 1955 1997 1998 1933 1999 2000 1920 2001 2002 2003 2004 1950 2005 2006 2007 2008 2009 2010
  • 9. Rainfall (mm) Probability of exceedence (%) 0 100 200 300 400 500 0.0 0.2 0.4 0.6 0.8 1.0 1900 1901 1944 ave= 219 1932 100 1989 1951 1959 1899 1928 1919 1915 2002 1968 200 1964 1982 1930 1918 1986 1965 1939 1945 1943 1938 1937 300 1902 2001 1922 1912 1984 1914 Total rainfall (mm) 1966CSIRO. Using models to support farmer decision-making 1985 1941 1904 400 1978 1905 1911 1926 1929 1988 1995 1921 1957 1936 500 1981 1993 1913 2005 1999 1935 1979 1952 1920 1987 1997 Rainfall (mm) 1948 1909 1972 1967 0 100 200 300 400 500 1990 2006 1956 1931 1934 1899 1900 1980 1901 1902 ave= 219 2003 1903 1904 1998 1905 1906 1907 1908 1977 1909 1996 1910 1911 1927 1912 1913 1906 1914 1915 2004 1916 1917 1950 1918 1919 1920 1921 1953 1922 1992 1923 1924 1970 1925 1926 1963 1927 1928 1946 1929 1930 1931 How much in crop rainfall (summer) 1903 1932 1933 1923 1934 1935 1924 1936 1937 1908 1938 1939 1960 1940 1941 1917 1942 1943 1944 1945 1925 1946 1971 1947 1948 1969 1949 1950 1940 1951 1952 2000 1953 1954 1955 1956 2009 1957 1976 1958 1959 1910 1960 1961 1947 1962 1963 1942 1964 1965 1907 1966 1967 1968 1969 1974 1970 1991 1971 1972 1961 1973 1974 1949 1975 1976 1933 1977 1978 1979 1980 2010 1981 2007 1982 1983 1916 1984 1985 1962 1986 1987 1958 1988 1989 2008 1990 1991 1992 1993 1983 1994 1954 1995 1996 1994 1997 1998 1975 1999 2000 1973 2001 2002 1955 2003 2004 2005 2006 2007 2008 2009 2010
  • 10. Rainfall (mm) Probability of exceedence (%) 0 100 200 300 400 0.0 0.2 0.4 0.6 0.8 1.0 1957 1994 1940 ave= 193 ave= 208 1902 100 2002 1982 1914 1965 1972 1977 1980 1911 1929 1927 2006 1905 1928 1975 1919 1976 1974 1946 1972 200 1971 1977 1926 1970 1953 1980 1941 1937 2004 1915 1979 1967 1932 1944 1908 300 1973 1918 Total rainfall (mm) 1936CSIRO. Using models to support farmer decision-making 1922 1951 2003 1943 2001 1961 1987 1978 1900 1923 1975 400 1935 1992 1976 2007 2009 1945 1974 1904 1968 1960 1997 1912 1990 Rainfall (mm) 1910 1971 1959 1989 1907 0 100 200 300 400 1970 1952 1913 1931 1900 1938 1901 1902 1948 1903 1904 ave= 193 ave= 208 1999 1905 1906 1907 1908 1991 1909 1963 1910 1911 1984 1912 1913 1958 1914 1915 1917 1916 1917 1918 1919 1985 1920 How much in crop rainfall (winter) 1964 1921 1922 1996 1923 1924 1956 1925 1926 1930 1927 1928 1934 1929 1930 1931 1932 1909 1933 1962 1934 1935 1995 1936 1937 1979 1938 1939 1901 1940 1941 1942 1943 2005 1944 1966 1945 1946 1988 1947 1948 1939 1949 1950 1954 1951 1952 1986 1953 1954 1955 1956 1947 1957 1973 1958 1959 1925 1960 1961 2000 1962 1963 1993 1964 1965 1969 1966 1967 1968 1969 1924 1970 1942 1971 1972 2008 1973 1974 1998 1975 1976 1903 1977 1978 1979 1980 2010 1981 1921 1982 1983 1978 1984 1985 1916 1986 1987 1983 1988 1989 1981 1990 1991 1992 1993 1906 1994 1949 1995 1996 1955 1997 1998 1933 1999 2000 1920 2001 2002 2003 2004 1950 2005 2006 2007 2008 2009 2010
  • 11. Rainfall (mm) Probability of exceedence (%) 0 100 200 300 400 500 0.0 0.2 0.4 0.6 0.8 1.0 1900 1901 1944 ave= 219 ave= 291 1932 100 1989 1951 1959 1899 1928 1919 1915 1978 2002 1968 200 1964 1979 1982 1930 1918 1972 1986 1980 1965 1977 1939 1945 1943 1970 1938 1937 300 1902 1971 2001 1922 1976 1912 1984 1974 1914 Total rainfall (mm) 1966CSIRO. Using models to support farmer decision-making 1985 1941 1904 400 1978 1905 1911 1926 1929 1988 1995 1921 1957 1936 500 1975 1981 1993 1913 2005 1973 1999 1935 1979 1952 1920 1987 1997 Rainfall (mm) 1948 1909 1972 1967 0 100 200 300 400 500 1990 2006 1956 1931 1934 1899 1900 1980 1901 1902 1903 ave= 219 ave= 291 2003 1904 1998 1905 1906 1907 1908 1977 1909 1996 1910 1911 1927 1912 1913 1906 1914 1915 2004 1916 1917 1950 1918 1919 1920 1921 1953 1922 1992 1923 1924 1970 1925 1926 1963 1927 1928 1946 1929 1930 1931 How much in crop rainfall (summer) 1903 1932 1933 1923 1934 1935 1924 1936 1937 1908 1938 1939 1960 1940 1941 1917 1942 1943 1944 1945 1925 1946 1971 1947 1948 1969 1949 1950 1940 1951 1952 2000 1953 1954 1955 1956 2009 1957 1976 1958 1959 1910 1960 1961 1947 1962 1963 1942 1964 1965 1907 1966 1967 1968 1969 1974 1970 1991 1971 1972 1961 1973 1974 1949 1975 1976 1933 1977 1978 1979 1980 2010 1981 2007 1982 1983 1916 1984 1985 1962 1986 1987 1958 1988 1989 2008 1990 1991 1992 1993 1983 1994 1954 1995 1996 1994 1997 1998 1975 1999 2000 1973 2001 2002 1955 2003 2004 2005 2006 2007 2008 2009 2010
  • 12. The value of stored water !CSIRO. Using models to support farmer decision-making
  • 13. Accumulation of water between cropsCSIRO. Using models to support farmer decision-making
  • 14. Accumulation of water between cropsCSIRO. Using models to support farmer decision-making
  • 15. Explore how rotations affect riskCSIRO. Using models to support farmer decision-making
  • 16. Explore how rotations affect riskCSIRO. Using models to support farmer decision-making
  • 17. In field decisionsCSIRO. Using models to support farmer decision-making
  • 18. Conclusion • Was there an ideal crop rotation for the region that maximised yield and minimised risk ? • yes but flexible management is needed in a variable environment • Was simulation modelling the right approach ? • yes but it needs to be combined with simple models.CSIRO. Using models to support farmer decision-making
  • 19. Thank youCSIRO. Using models to support farmer decision-making