Systems Thinking workshop @ Lean UX NYC 2014

2,763 views

Published on

Slides with notes for my workshop at Lean UX 2014. This is an iterated version of my 2013 workshop - different exercise, slightly different content, but much is similar. Includes link to handout!

Published in: Design, Technology, Business
0 Comments
18 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
2,763
On SlideShare
0
From Embeds
0
Number of Embeds
123
Actions
Shares
0
Downloads
103
Comments
0
Likes
18
Embeds 0
No embeds

No notes for slide

Systems Thinking workshop @ Lean UX NYC 2014

  1. 1. Making  sense  of  messy  problems Johanna  Kollmann @johannakoll !       Lean  UX  NYC  2014 Systems  thinking  for  complex  business  models Illustration  by  David  Wicks:  http://www.flickr.com/photos/sansumbrella/467998944/
  2. 2. Intro  about  me:  worked  on  a  range  of  complex  systems  such  as  a  voice  communica;on  system  for  the  NASA,  before  learning  more  about  systems  thinking  as  part  of  my  HCI  degree  in  London.  Interest  in  systems  theory  and  organisa;onal  structures  remained  when  I  was  consul;ng,  e.g.  a  large  retailer  who  was  reshaping  their  en;re  business   and  data  structure  to  enable  mul;-­‐channel.  While  geFng  interested  in  business  models  and  the  startup  world,  I  realised  that  systems  thinking  is  also  core  to  business  models,  lean  manufacturing,  and  lean  startup.    
  3. 3.        The  next  3  hours  of  your  life: Introduction  to  Systems  Thinking   Tools  for  modeling  systems  (collaborate!)   Systems  behavior  over  time   Change   ASK: What’s your current understanding of systems thinking - share with neighbour What are your expectations for today Ask a few people to share
  4. 4. Monitor  changes  in  the  system   Understand  people’s  worldviews   To  reduce  uncertainty NUTSHELL!!!!
  5. 5. Systems  Thinking? Why  you  should  care  about  it   !Increasing  complexi;es  and  dependencies  require  us  to  think  holis;cally.   We  need  to  think  dynamic  and  over  ;me  rather  than  sta;c  and  short-­‐lived     Technology  and  business  context  changes.   !ST  is  relevant  to  both  UX  and  LS.  
  6. 6. http://visitmix.com/work/descry/awebsitenameddesire/ The  systems  we  deal  with  in  the  world  of  a  website   Running  a  business  is  taking  this  to  a  different  level  -­‐  being  a  founder  is  taking  the  running  around  and  coordina;ng  to  a  different  level!
  7. 7. In  the  past  the  man  has  been  first;     in  the  future  the  system  must  be  first.     ! ~  Frederick  Winslow  Taylor  (1911) father  of  scien;fic  management  and  efficiency  movement
  8. 8. In  the  past  the  man  has  been  first;  in  the   future  the  system  must  be  first.   ! This  in  no  sense,  however,  implies  that   great  men  are  not  needed.       ! ~Frederick  Winslow  Taylor  (1911) According  to  Eric  Ries,  forgeFng  the  human  part  has  led  to  2  problems:     1)  overly  rigid  business  systems  that  failed  to  take  advantage  of  adaptability,  crea;vity,  and  wisdom  of  individual  workers     2)  overemphasis  on  planning,  preven;on  and  procedure,  which  enable  organisa;ons  to  achieve  consistent  results  in  a  stable  world.
  9. 9. “At  the  root  of  every   seemingly  technical  problem   is  a  human  problem.”   ~ Taiichi Ohno
  10. 10. “A  system  is ~ Donella Meadows a  set  of  elements  or  parts   o[en  classified  as  its  func;on  or   purpose.”   that  is  coherently  organized  and   inter-­‐connected  in  a  pa]ern  or   structure   that  produces  a  characteris;c  set  of   behaviors,  
  11. 11. Peter  Checkland Human  activity  systems Soft  Systems  Methodology Examples:  hard  system  =  thermostat,  motherboard.  so[  system  =  game  of  poker,  soccer  game,  mee;ng,  healthcare.   Human activity systems, on the other hand are essentially complex, indefinable and purposeful. !He  developed  the  “so[  systems  methodology”,  sugges;ng  that  most  problems  in  systems  are  caused  because  “human  beings  are  hard  to  predict”.     He  did  not  think  that  there  were  things  you  could  “fix”  with  systems  thinking,  instead  there  were  “situa;ons  you  could  improve”.   !4  ac;vi;es  of  SSM:   -­‐  Finding  out  about  the  situa;on
 -­‐  Making  purposeful  ac;vity  models  based  on  par;cular  world  views.
 -­‐  Using  the  models  to  ques;on  the  situa;on
 -­‐  Defining  ac;on  to  improve  the  situa;on.  
  12. 12. Peter  Checkland Soft  Systems  Methodology   Activities: Finding  out  about  the  problem  situation   Making  purposeful  activity  models   Using  the  models  to  question  the  situation   Defining  action  to  improve  the  situation Examples:  hard  system  =  thermostat,  motherboard.  so[  system  =  game  of  poker,  soccer  game,  mee;ng,  healthcare.   Human activity systems, on the other hand are essentially complex, indefinable and purposeful. !He  developed  the  “so[  systems  methodology”,  sugges;ng  that  most  problems  in  systems  are  caused  because  “human  beings  are  hard  to  predict”.     He  did  not  think  that  there  were  things  you  could  “fix”  with  systems  thinking,  instead  there  were  “situa;ons  you  could  improve”.   !4  ac;vi;es  of  SSM:   -­‐  Finding  out  about  the  situa;on
 -­‐  Making  purposeful  ac;vity  models  based  on  par;cular  world  views.
 -­‐  Using  the  models  to  ques;on  the  situa;on
 -­‐  Defining  ac;on  to  improve  the  situa;on.  
  13. 13. !
  14. 14.        Leverage  points… …places  within  a  complex  system  where  a  small  shift  in  one   thing  can  produce  big  changes  in  everything.   …are  often  counterintuitive.
  15. 15. Systems  Thinking  &  UX
  16. 16. 1)  Modeling
  17. 17. 2)  Behavior  over  time
  18. 18. 3)  Change
  19. 19. 1)  Modeling Models are tools for understanding complex situations. Models are tools for communicating complex situations.
  20. 20. ! “Only  by  building  a  model  of  customer  behaviour  and   then  showing  our  ability  to  use  our  product  or  service   to  change  it  over  ;me  can  we  establish  real  facts   about  the  validity  of  our  vision.”   ~ Eric Ries
  21. 21. Personas  from  Design  Jam  London,  by  Jeff  Van  Campen  http://www.flickr.com/photos/otrops/tags/designjamlondon/ This  is  where  UX  offers  lots  of  tools:  personas,  customer  journey  maps;  Lean  Startup’s  hypothesis-­‐driven  approach  also  is  modeling.  
  22. 22. Flickr  User  Model  by  Bryce  Glass  http://www.flickr.com/photos/bryce/58299511/ Models  help  us  understand  how  things  work.
  23. 23. 1)  Modeling 2)  Behavior  over  time 3)  Change        Rich  Picture 1.  Construction  of  the  Humber  Bridge  (adapted  from  Stewart  and   Fortune,  1994)  ©  The  Open  University 2.  Distance  Learning  Situation  ©  Wood-­‐Harper  et  al,  Information   Systems  Definition:  The  Multiview  Approach,  Blackwell  Scientific   Publications  1985  
  24. 24. 1)  Modeling 2)  Behavior  over  time 3)  Change        Rich  Picture  elements Stakeholders Worldview Connections Conflicts 2.  Distance  Learning  Situation  ©  Wood-­‐Harper  et  al,  Information   Systems  Definition:  The  Multiview  Approach,  Blackwell  Scientific   Publications  1985   Worldview  is  a  concept  for  empathy   !Consider:   -­‐  roles  that  people  adopt  in  the  situa;on  (which  may  be  formally  recognised  or  quite  informal);  the  norms  which  govern  people’s  behaviour;  and  the  values  they  espouse.   -­‐  poli;cal  aspects  of  the  situa;on,  in  other  words  recogni;on  of  the  different  interests  that  are  represented  and  how  these  different  interests  are  accommodated.  
  25. 25. 1)  Modeling 2)  Behavior  over  time 3)  Change
  26. 26. 1)  Modeling 2)  Behavior  over  time 3)  Change
  27. 27. 1)  Modeling 2)  Behavior  over  time 3)  Change !
  28. 28. 1)  Modeling 2)  Behavior  over  time 3)  Change
  29. 29. Handout:   http://bit.ly/OQzwza
  30. 30. 1)  Modeling 2)  Behavior  over  time 3)  Change        Rich  Picture  elements Stakeholders Worldview Connections Conflicts 2.  Distance  Learning  Situation  ©  Wood-­‐Harper  et  al,  Information   Systems  Definition:  The  Multiview  Approach,  Blackwell  Scientific   Publications  1985  
  31. 31. 1)  Modeling 2)  Behavior  over  time 3)  Change        Rich  Picture  applications Framing  the  problem:  Checkland’s  root  definition   Understanding  and  communicating  a  complex  situation   Uncovering  assumptions  and  knowledge  gaps   Research  planning   Stakeholder  risk  matrix CATWOE 1. A system Transformation – ie a clear relationship between system inputs and outputs. 2. A system Owner – ie someone who is ultimately responsible for the system. This person, or persons, can often be identified by asking the question ‘who can stop the activity’? 3. Actors – those people who take action within the system. 4. Customers for the system – ie the beneficiaries, or intended beneficiaries, of the system. 5. The system Environment within which the activity takes place. 6. The World view which enables all of the above to make sense.
  32. 32. 1)  Modeling 2)  Behavior  over  time 3)  Change        Business  Model  Canvas Job  seekers Recruiters Jobs Candidates Manage,   promote   platform Platform Manage  and  develop  platform Marketing  costs Job  ads Hiring  fee
  33. 33. 2)  Behavior  over  time
  34. 34. 1)  Modeling 2)  Behavior  over  time 3)  Change        Flows inflow outflow information feedback,  control stock Bath  tub  example  -­‐  overflow  pipe   !2  types  of  flows.     First  one  is  material  and  stock  flows.  Stocks  change  over  ;me  through  the  ac;ons  of  flow.  Stocks  act  as  buffers  or  delays,  and  help  a  system  to  stay  in  balance.   You  can  also  apply  this  to  people.    Shows  limits  to  growth  if  your  resources  aren’t  endless.     Key  is  to  understand  and  monitor  system  behaviour  over  ;me.  Do  not  focus  on  only  individual  events.   !The  second  type  are  informa;on  flows.  While  it’s  hard  to  change   physical  structure,  materials,  resources,  changing  how  informa;on  is   distributed  and  presented  in  a  system  can  have  major  impact.     "Informa)on  holds  systems  together  and  plays  a  great  role  in     determining  how  they  operate.  Most  of  what  goes  wrong  in  systems    goes  wrong  because  of  biased,  late,  or  missing  informa)on."  (Meadows)   Adding  or  restoring  informa;on  can  be  a  powerful  interven;on,  usually     much  easier  and  cheaper  than  rebuilding  physical  infrastructure.   !Notes  on  John  Seddon:  interes;ng  to  consider  how  customer  inquiries/feedback  come  in  and  flow  through  the  system
  35. 35. 1)  Modeling 2)  Behavior  over  time 3)  Change        Feedback  loops George’s  ability  to   solve  problems Number  of   problems  solved Number  of   remaining   problems Time  available   per  problem Project  in   trouble Management   pressure  to  solve   problems R1 R3 R2 Need  to  involve   Paul B1 Reinforcing  feedback  loops   A  posi;ve  feedback  loop  is  self-­‐reinforcing.  The  more  it  works,  the  more  it  gains  power  to  work  some  more.   Posi;ve  feedback  loops  drive  growth,  explosion,  erosion,  and  collapse  in  systems.  A  system  with  an  unchecked  posi;ve  loop  ul;mately  will  destroy  itself.  Usually  nega;ve  feedback  loop  kicks  in,  eg  epidemic  runs  out  of  infectable  people—or  people  take  increasingly  strong  steps  to  avoid  being  infected.   Reducing  the  gain  around  a  posi;ve  loop—slowing  the  growth—is  usually  a  more  powerful  leverage  point  in  systems  than  strengthening  nega;ve  loops,  and  much  preferable  to  leFng  the  posi;ve  loop  run.   (...)  control  must  involve  slowing  down  the  posi;ve  feedbacks.   !Balancing  feedback  loop     A  nega;ve  feedback  loop  needs  a  goal  and  a  response  mechanism.  Self-­‐correct  the  system,  o[en  inac;ve  =  emergency  mechanisms.  Seem  costly  as  inac;ve,  removing  them  has  li]le  impact  in  the  short-­‐term,  neglect  the  long-­‐term  impact.   Here  are  some  other  examples  of  strengthening  nega;ve  feedback  controls  to  improve  a  system's  self-­‐correc;ng  abili;es:  preven;ve  medicine,  exercise,  and  good  nutri;on  to  bolster  the  body's  ability  to  fight  disease,  pollu;on  taxes.   !The  informa)on  delivered  by  a  feedback  loop  -­‐  even  nonphysical  feedback  -­‐  can  only  affect  future  behaviour;  it  can't  deliver  a  signal  fast  enough  to  correct  behaviour  that  drove  the  current  feedback.  There  will  always  be  delays  in  responding.   The  loop  that  dominates  the  system  will  determine  the  behaviour.   Consider  the  driving  factors,  how  they  might  behave,  and  what  drives  them.   !  Dynamic  systems  studies  are  not  designed  to  predict  what  will  happen,  but  to  explore  what  would  happen  if...  -­‐-­‐>  system  dynamics  models  explore  possible  futures  and  ask  'what  if'  ques;ons.   !Causal  Loop  Diagrams  help  reveal  system  dynamics.  Crea;ng  the  diagrams  involves  more  work  than  reading  them,  but  can  be  done  by  anyone  willing  to  take  ;me  to  think  things  through  and  look  for  rela;onships.  For  example,  what  problems  might  arise  by  involving  help?  Is  it  possible  that  things  will  get  worse  before  they  get  be]er?  And  why   would  that  be?   !Rela)ng  loops  to  Eric  Ries’  engines  of  growth   word  of  mouth,  side  effect  of  use,  paid  adver;sing,  repeat  use   S;cky  -­‐  make  me  come  back   Viral  -­‐  word  of  mouth   Paid
  36. 36. 1)  Modeling 2)  Behavior  over  time 3)  Change        Behavior  over  time  graphs inventory days perfect  informa;on  scenario   !
  37. 37. 1)  Modeling 2)  Behavior  over  time 3)  Change        Behavior  over  time  graphs inventory days what  really  happens   !What  came  before?   What  might  happen  next?   !Focus  on  trends  over  ;me  rather  than  single  events.     Learn  if  the  system  is  approaching  a  goal  or  limit.   Inventory  =  stock  (could  also  be  informa;on)
  38. 38. 1)  Modeling 2)  Behavior  over  time 3)  Change        Cohort  analysis
  39. 39. 1)  Modeling 2)  Behavior  over  time 3)  Change        Cohort  analysis Eric  writes:  Cohort  analysis:  This  technique  is  useful  in  many  types  of  business,  because  every  company  depends  for  its  survival  on  sequences  of  customer  behaviour  called  flows.  Customer  flows  govern  the  interac;on  of  customers  with  a  company's  products.  They  allow  us  to  understand  a  business  quan;ta;vely  and  have  much  more   predic;ve  power  than  do  tradi;onal  gross  metrics.   p  145  Cohort-­‐based  reports  are  the  gold  standard  of  learning  metrics:  they  turn  complex  ac;ons  into  people-­‐based  reports.  
  40. 40. 1)  Modeling 2)  Behavior  over  time 3)  Change        Custom  tools  to  monitor  interactions by @lukew
  41. 41. 1)  Modeling 2)  Behavior  over  time 3)  Change Photo  by  Anders  Zakrisson  http://www.flickr.com/photos/anders-­‐zakrisson/4982281184/ Talking  to  people,  empathy,  intui;on  
  42. 42. DATA MEANING humanise  the  data  –  tell  a  story   !Informa;on  flows  enable  other  things  in  the  system  to  happen   Consider  the  feedback  loops   Observe  customer  behavior  over  ;me   Use  qualita;ve  findings  and  your  gut
  43. 43. 3)  Change
  44. 44. 1)  Modeling 2)  Behavior  over  time 3)  Change inventory days        Flows  and  loops Donella  Meadows  also  says  that  its  quite  tricky  to  properly  monitor  a  system  and  react  appropriately,  because  the  delays  in  observing,  and  then  the  delay  in  ac;ng  means  that  by  the  ;me  your  change  goes  into  place,  the  system  is  probably  in  a  different  state.  Its  easy  to  over  compensate.  It  seems  to  me  that  you  need  to  try  to  get  both  stats  as   real-­‐;me  as  possible,  and  gain  a  good  understanding  of  natural  flows  over  ;me.     shi[  a]en;on  from  the  abundant  factors  to  the  next  poten;al  limi;ng  factor.  layer  of  limits.   !If  a  decision  point  in  a  system  (which  can  be  a  person)  is  responding  to  delayed  informa;on,  or  responding  with  a  delay,  the  decision  will  be  off  target.  Ac;on  taken  too  fast  can  cause  unnecessary  instability.   !When  there  are  long  delays  in  feedback  loops,  some  sort  of  foresight  is  essen;al.  To  act  only  when  a  problem  becomes  obvious  is  to  miss  an  important  opportunity  to  solve  the  problem.     !genchi  gembutsu  from  Lean:  understands  that  a  small  change  can  affect  the  overall  system.  the  person  close  to  the  problem  is  trusted  with  solving  it.  You  have  to  'go  and  see  for  yourself'.  don’t  change  your  strategy  on  a  whim!  
  45. 45. 1)  Modeling 2)  Behavior  over  time 3)  Change systems  with  different  users:  consider  how  role  changes  will  impact  everything.  Some  of  this  is  quite  hard  to  implement!  Understand  the  system  structure  you’re  building!     Work  with  developers  who  draw  diagrams  about  the  so[ware  system,  so  you  also  understand  technical  legacies  and  ripple  effects.  
  46. 46. 9.    Numbers  (subsidies,  taxes,  standards).   8.    Material  stocks  and  flows.   7.    Regulating  negative  feedback  loops.   6.    Driving  positive  feedback  loops.   5.    Information  flows.   4.    The  rules  of  the  system  (incentives,  punishment,  constraints).   3.    The  power  of  self-­‐organization.   2.    The  goals  of  the  system.   1.    The  mindset  or  paradigm  out  of  which  the  goals,  rules,   feedback  structure  arise.   1)  Modeling 2)  Behavior  over  time 3)  Change        Leverage  points Mention how we often find ourselves as consultants in a situation where we are working on one level - eg improving information flows - but effectiveness of the solution we are implementing is constrained by leverage points of a higher level (eg rules).
  47. 47. 1)  Modeling 2)  Behavior  over  time 3)  Change        Disruptive  startups  change  existing  systems Behaviour  at  scale   Emergence  of  culture   Environment  readiness   Why certain businesses emerge from certain locations, contexts
  48. 48.        Take-­‐aways The  ‘worldviews’  that  people  and  elements  in  the  system  hold The  processes  that  are  necessary  to  deliver  value  to  customers ! How  to  gather  and  visualize  information  holistically How  user-­‐centered  design  and  empathy  help  to  reduce  uncertainty ! What  is  the  right  level  for  the  impact  you  are  aiming  for? What  enables  the  change,  where  are  conflicts,  who  can  be  your  change  agent?
  49. 49. This  matters  because
  50. 50. Business  trends.
  51. 51. Humane  systems.
  52. 52. The intuitive mind is a sacred gift and the rational mind is a faithful servant. We have created a society that honors the servant and has forgotten the gift. ! We will not solve the problems of the world from the same level of thinking we were at when we created them. More than anything else, this new century demands new thinking: ! We must change our materially based analyses of the world around us to include broader, more multidimensional perspectives. ! ~Albert Einstein
  53. 53.        Resources The  Lean  Startup  by  Eric  Ries   ! Systems  Thinking,  Systems  Practice  and  Soft  Systems  Methodology  by  Peter  Checkland   ! Thinking  in  Systems:  A  Primer  by  Donella  Meadows   ! Business  Model  Generation  by  Alexander  Osterwalder  and  Yves  Pigneur   ! Donella  Meadow’s  article  Places  to  Intervene  in  a  System  can  be  found  at  http:// www.developerdotstar.com/mag/articles/places_intervene_system.html   ! Peter  Senge  is  a  key  systems  thinker,  I  haven’t  included  any  of  his  material  directly,  but  read   about  this  perspectives  especially  on  organisational  change.  Check  him  out.   ! For  the  design  geek  in  you,  read  up  on  Buckminster  Fuller’s  Design  Science.  
  54. 54. Handout:   http://bit.ly/OQzwza

×