Innovation through data capitalisation


Published on

Presentation for the Creative Industries

1 Like
  • Be the first to comment

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

Innovation through data capitalisation

  1. 1. Innovation through Data Capitalisation Joanne Jacobs Social Media Consultant Exploring Data Driven Innovation - Creative Consumer Workshop Wed 09 Mar 2011 Inspace - Edinburgh School of Informatics, Edinburgh Image source:
  2. 2. Scope of the presentation <ul><li>Primary argument </li></ul><ul><li>Value versus utility </li></ul><ul><li>The Value of Data </li></ul><ul><li>The Utility of Data </li></ul><ul><li>What data is collected? </li></ul><ul><li>What additional data can be collected? </li></ul><ul><li>How to capitalise on data </li></ul><ul><li>Disruptive versus continuous innovation </li></ul><ul><li>Innovation through data capitalisation </li></ul><ul><li>Case studies </li></ul><ul><li>Additional Resources </li></ul><ul><li>Questions </li></ul>
  3. 3. Primary argument <ul><li>There is an opportunity cost of failing to make use of data. </li></ul><ul><li>Data should trigger action, not just be support material in reports </li></ul>Image sources:
  4. 4. Value versus utility <ul><li>Value: Worth of a product/system in terms of use or in terms of market perception </li></ul><ul><li>Collectively determined </li></ul><ul><li>Utility: usefulness, capacity to generate positive outcomes and minimise negative outcomes </li></ul><ul><li>Individually determined </li></ul>
  5. 5. The maths in brief (Metcalfe’s law, etc) <ul><li>Value of a network determined by number of possible connections: </li></ul><ul><li>n 2 (Metcalfe’s law) </li></ul><ul><li>Can only have connections with other users, thus better equation is: </li></ul><ul><li>n(n - 1)=2 (Reed’s Law) </li></ul><ul><li>Odlyzko says total connections doesn’t represent true value of network, nor do networks grow exponentially, thus best equation is: </li></ul><ul><li>n log(n) (Odlyzko & Tilly’s Law) </li></ul>Image source: http://'s_law
  6. 6. What does all this mean? <ul><li>Value of networks not directly proportional to either number of people in a network, or the amount of data collected; </li></ul><ul><li>Value of data more directly associated with its usefulness and perceived benefits; </li></ul><ul><li>Value of data can be hidden as well as acknowledged. </li></ul>
  7. 7. The Value of Data <ul><li>Total tangible and intangible acknowledged benefits derived from data </li></ul><ul><li>DOES NOT include data collected but not capitalized </li></ul><ul><li>DOES NOT include unacknowledged benefits, whether tangible or intangible. </li></ul>Image source:
  8. 8. The Utility of Data <ul><li>Total possible interactions in a system </li></ul><ul><ul><li>Supply chain databases (suppliers and customers) </li></ul></ul><ul><ul><ul><li>Earnings per record </li></ul></ul></ul><ul><ul><ul><li>Risk/price of rebuilding </li></ul></ul></ul><ul><ul><li>Customer interactions (online or in person) </li></ul></ul><ul><ul><ul><li>Earnings per interaction </li></ul></ul></ul><ul><li>Total possible opportunities for collecting/recording data </li></ul>Image source:
  9. 9. What data is collected? <ul><li>Customer databases </li></ul><ul><li>Supplier databases </li></ul><ul><li>Sales </li></ul><ul><li>Media profile </li></ul><ul><li>Website hits/interactions </li></ul><ul><li>Social media followers/likes/retweets </li></ul><ul><li>Sentiment/brand awareness </li></ul><ul><li>-> Predominantly tangible data </li></ul>Image source:
  10. 10. What additional data can be collected? <ul><li>Tangible: </li></ul><ul><ul><li>Content tags (for indexing content) </li></ul></ul><ul><ul><li>Resource cost per interaction (for staff costs) </li></ul></ul><ul><ul><li>Time per interaction (to understand speed of interactions) </li></ul></ul><ul><ul><li>Number of interactions (to understand increase/reduction in processing) </li></ul></ul><ul><li>Intangible: </li></ul><ul><ul><li>Employee happiness with/understanding of how to find information </li></ul></ul><ul><ul><li>Supply chain perceptions of efficiency </li></ul></ul><ul><ul><li>Network effects on productivity </li></ul></ul>Image source:
  11. 11. How to capitalise on data <ul><li>Map what data is collected with distinct actions </li></ul><ul><li>Present data in different contexts (geographical maps, timelines, heatmaps, other data visualisation techniques) </li></ul><ul><li>Consider what opportunities for data collection have been overlooked </li></ul><ul><li>Use data crunching resources for easy visualisation and insight generation. </li></ul>Image source:
  12. 12. Disruptive vs Continuous Innovation <ul><li>Disruptive innovation: creates new markets that have never before existed </li></ul><ul><li>Continuous or transformational innovation: solve existing problems either in new or expected ways </li></ul><ul><li>Most innovation derived from data will be continuous/transformational </li></ul>Image source:
  13. 13. Innovation through Data Capitalisation <ul><li>Most innovation driven by tinkerers, not by R&D , thus needs-driven, not research-driven </li></ul><ul><li>Greatest needs are based on scarcity of resources </li></ul><ul><li>New knowledge emerges when existing data ‘mashed together’ with other content (ie: crime maps) </li></ul>Image source:
  14. 14. Failing to use data <ul><li>Much data collected never capitalized: </li></ul><ul><ul><li>Insights from customer interactions in person and online </li></ul></ul><ul><ul><li>‘ Uncleaned’ databases </li></ul></ul><ul><ul><li>Unindexed, non-contextualised content </li></ul></ul><ul><li>All data collected, but not capitalized = COST </li></ul><ul><li>All data not collected where possible = COST </li></ul>Image source:
  15. 15. Reports are not enough <ul><li>Many organisations feel that by reporting data, they are capitalizing; this is not necessarily true </li></ul><ul><li>Reports of interactions for Board or stakeholders which do not result in action = COST </li></ul><ul><li>Reports should be presented with insights as well as a variety of scenarios for organisational behaviour change. </li></ul>Image source:
  16. 16. Case studies <ul><li>Police crime maps </li></ul><ul><li>Wordle on website comments/mentions </li></ul><ul><li>Network switching for mobile phone suppliers </li></ul><ul><li>YouTube: Map my summer </li></ul><ul><li>Fortune’s Best Companies to Work For </li></ul><ul><li>CO2 creation </li></ul>Image source:
  17. 17. Police crime maps Insights: Relationships between crimes in various areas – data can be indexed by socio-economic factors, etc. From:
  18. 18. Wordle for mentions Insights: Individuals, places, activities. From: Creative Industries Knowledge Transfer networks articles
  19. 19. Mobile network switching Insights: Not just numbers, but patterns of change. From: Ken’s Tech tips
  20. 20. Map my summer Insights: Awareness of the campaign, network spread. From: YouTube Map My Summer
  21. 21. Fortune’s Best Companies to Work For Insights: Values of employees. From: CNN Money site
  22. 22. CO2 Creation Insights: Comparison of activities or alternatives. From: General Electric data visualisation
  23. 23. Additional Resources <ul><li>MIT’s Exhibit: http://simile- /exhibit/ </li></ul><ul><li>Open Heat Map: http:// / </li></ul><ul><li>Google insights search: http:// /insights/search/# </li></ul><ul><li>Forrester customer social technographics profiling: http:// </li></ul><ul><li>Wordle: </li></ul><ul><li>Visualizing http:// / </li></ul><ul><li>Spicy nodes: http:// / </li></ul><ul><li>Slatebox mindmapping: http:// /Index </li></ul><ul><li> brianstorming: https:// / </li></ul>Image source:
  24. 24. Social media monitoring <ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> </li></ul><ul><li> (client based) </li></ul><ul><li> (private beta) </li></ul><ul><li> (free trial) </li></ul><ul><li> </li></ul>Image source:
  25. 25. Questions? <ul><li>Joanne Jacobs </li></ul><ul><li>Social Media Expert Consultant </li></ul><ul><li>Email: </li></ul><ul><li>Blog: </li></ul><ul><li>Twitter: joannejacobs </li></ul><ul><li>Skype: bgsbjj </li></ul><ul><li>Skype-in: (+44) 0208 144 9348 </li></ul><ul><li>Mob: (+44) 07948 318 298 </li></ul>
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.