Guía ejercicios operatoria de raices, racionalización, ecuaciones irracionales

41,194 views

Published on

ejercicios

Published in: Education
0 Comments
8 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
41,194
On SlideShare
0
From Embeds
0
Number of Embeds
9
Actions
Shares
0
Downloads
642
Comments
0
Likes
8
Embeds 0
No embeds

No notes for slide

Guía ejercicios operatoria de raices, racionalización, ecuaciones irracionales

  1. 1. RAÍCESI.- Escribe en forma exponencial las expresiones siguientes: 1. 2x = 2. 3 b4 = 3. 3 mx = 4. 4 x 2 y5 = 5. 5 a 3 bc 3 = 6. 3 xy 2 z = 7. 2 ⋅3 4 = 8. 5 8 ⋅3 2 = 9. x⋅ x⋅ x = 10. x = 11. x = 12. 3 x =II.- Propiedades de las raíces:1) Si n es impar , ∀ a ∈ IR , n a ∈ IR2) Si n es par , n a ∈ IR si a>03) Si n es par , n a ∉ IR si a<04) RAIZ DE UNA POTENCIA CON EXPONENTE IGUAL AL INDICE: n an = ( a) n n =a Ej.: ( 7) 5 5 =7
  2. 2. 5) RAIZ DE UN PRODUCTO: n a⋅b = n a ⋅n b Ej.: 3 4 ⋅3 2 = 3 8 = 26) RAIZ DE UN CUOCIENTE: n a a n = n b b 50 50 Ej.: = = 25 = 5 2 24) RAIZ DE UNA RAIZ: n m a = nm a Ej.: 3 64 = 6 64 = 25) AMPLIFICACION Y SIMPLIFICACION DEL INDICE DE UNA RAIZ: np n: p n am = a mp ó n am = a m: p Ej.: 10 255 = 10:5 255:5 = 25 = 56) FACTOR DE UNA RAÍZ a n b = n a nb Ej.: 3 2 = 3 2 ⋅ 2 = 18
  3. 3. 7) RACIONALIZACIÓN DE DENOMINADORES: Racionalizar una fracción con denominadores irracionales consiste en eliminar los radicales delos denominadores. Ejemplos: 1) 3 3⋅ 2 3 2 = = 2 2⋅ 2 2 2) 2 = ( 2⋅ 7 − 2 = 2 7− 2 = ) 2 7− 2 ( ) ( ) 7+ 2 ( 7+ 2 7− 2 )( 7−2 5 )8) ECUACIONES IRRACIONALES: Son aquellas en que la incógnita está como cantidad sub-radical. Ejemplo: 1) 2x − 1 + 2 = 7 / -2 2x - 1 = 5 / () 2 ( 2x - 1 =(5 ) 2 )2 2x - 1 = 25 / +1 2x = 26 / :2 x = 13 2) 6 + 3 3x + 3 = 3 / () 2 6 + 3 3x + 3 = 9 / -6 3 3x + 3 = 3 / () 3 3x + 3 = 27 / -3 3x = 24 / :3 x =8
  4. 4. E J E R C I C I O SI.- SUMA LAS SIGUIENTES EXPRESIONES : 1. 4 + 25 − 9 = 2. 3 100 + 5 81 − 6 169 3. 3 x +5 x −2 x = 1 4 16 4. 3 + + 0,16 = 8 81 64 125 5. 3 − 2⋅3 = 27 8 6. x4 25 x 2 2 + 2⋅3 = y 8x6 7. 3 a 2 + 2 a + 1 + 2 ( a + 1) = 8. 2 x 2 + 53 x 3 + 4 x 4 = 9. 3 1000 + 2 ⋅ 3 64 =II.- DETERMINA EL CONJUNTO EN EL CUAL LAS RAÍCES SEAN REALES :Aplicación de x ∈ IR ⇔ x≥0 1. x −1 2. 2x +1 3. 1 − 2 x 4. 1 x−3 x −1 5. x +1 2 6. x−5
  5. 5. III.- SIMPLIFICA LAS SIGUIENTES EXPRESIONES Aplicación de RAIZ DE UN PRODUCTO y RAIZ DE UN CUOCIENTE 1. 12 = 2. 45a 5 b 3 = 3. ( a + b) 3 = 4. 3 8x 3 y 6 = 5. 3 24 x 5 y 6 z 3 = 6. 3 (2 x + y) 5 = n 7. a 2 n b 3n c n = 8. n x 2 n+5 = 9. 2n x 6n y 4n = a8 a6 10. + 8 = b6 b 45 x 5 y 3 11. = 48 z 7 24 x 5 y 3 12. 3 = 54 a 2 + 2ab + b 2 13. = 4a 2 + 4a + 1 a 2 + 2a + 1 14. = a 2 − 2a + 1 25a 6 15. = a 2 − 12a + 36
  6. 6. IV.- EXPRESA EN FORMA DE UNA SOLA RAÍZ:Aplicación de RAIZ DE UNA RAIZ FACTOR DE UNA RAIZ COMO FACTOR SUBRADICAL 1. 3 6 = 2. 4 2x = 3. 5 3= 4. 3 2 6 = 5. 4 a = 6. n xmx = 7. 3 3 3 3 = 8. mn m =V.- ESCRIBE LOS SIGUIENTES RADICALES CON ÍNDICE COMÚN :Aplicación de AMPLIFICACION Y SIMPLIFICACION DEL INDICE DE UNA RAIZ 3 1. 3 y 2 4 2. 2 y 3 3 4 3. 5 , 2 y 3 3 4 6 4. x , x y x x y xy 5. 4 , 3 y 6 3 6. a+b y a+b
  7. 7. VI.- ADICIÓN Y SUSTRACCIÓN DE RADICALES : Simplifica y luego realiza las siguientes adiciones : 1. 2 20 + 125 + 45 = 2. 2 27 + 5 12 − 2 75 = 3. - 4 28 + 63 + 6 20 + 2 45 = 4. 7 8 + 4 75 − 2 32 + 27 = 5. a - b -3 a - a -3 b = 6. a b − 3a b + 5 a 2 b − 4 a 4 b 2 = 7. n p − 2 n p + 18n p − 4n p = 1 2 3 1 8. a− a+ a− a= 2 5 4 3VII.- Realiza las siguientes multiplicaciones y simplifica : Aplicación de PRODUCTO DE RAICES y CUOCIENTE DE RAICES 1. 3⋅ 2⋅ 6 = 2. 3 3x ⋅ 3 2 x ⋅ 3 16 x 2 = 3. 4 2p 3 ⋅ 4 5 p 7 ⋅ 4 7 p 6 = 4. 2x + 1 ⋅ 2 x + 1 = 5. 5+ 3⋅ 5− 3 = 6. 2 ⋅3 2 ⋅4 2 = 7. 3 3x 2 yz ⋅ 3 9 x 4 y 2 z 5 = 8. (2 + 7 )⋅ (3 − 7 ) = 9. x+ y⋅ x− y = 10. 3 a +2 b ⋅ 3 a −2 b 11. (3 + 5 + 3 )(3 − 5 − 3 ) = 12. 3 a + b ⋅ 3 a 2 + 2ab + b 2 = 13. 2 7+ 5⋅ 2 7− 5 =
  8. 8. VIII.- REALIZA LAS SIGUIENTES DIVISIONES Y SIMPLIFICA : 1. 50 : 2 = 2. 3 54x 5 y 15 : 3 2x 2 y 3 = 3. (12 20 − 18 15 ) : 6 5 = 4. a 2 − 6a + 9 : a - 3 = 4 5. 3 5 : 24 2 = 3 6. 3 2 :6 5 = 7. (30 )( ) 6a − 27 18a + 18 12a : 6 6a =IX. RACIONALIZA LOS DENOMINADORES : 5 1. = 3 2 2. = 3 2 3 3. 3 = 3 a b 4. = b a a 5. 3 = ab mn 6. = 4 m3n 3 7. = 1+ 2
  9. 9. 2+ 38. = 2- 3 5 29. = 5+ 3 2 310. = 3 5 −2 2 a+ b11. = a- b ab12. = a b +b a 1+ a13. = a - 1- a 114. = 3 2+3 3 515. = 2+ 3− 2 3 216. = 5− 3+ 2 3 217. = 3 4− 2 a18. = 3 a+ b
  10. 10. X.- DETERMINA EL CONJUNTO SOLUCIÓN DE CADA ECUACIONES: 1. x−3 = 5 2. x −1 = x − 3 3. x( x − 3) − x = 5 4. x2 + 4 − 3 = x − 2 5. 1 + 7x = 2 2 6. 3+ 4+ x −8 = 3 7. 2x − 1 + 2x + 1 = 3 8. 1 + x = x + 7 9. x -1 + x + 8 = 9 10. 4x + 9 − x − 1 = x + 6 11. ( x −7 )( ) ( x +3 = x −6 )( x −5 ) 12. x - 1- x + x =1 x +1 x +3 13. = x +3 x +6 5 x + 13 3 14. = 7 x +5 2 15. x - 1- x + x =1 16. 2x - 1 − 2 − x - x + 8 = 0 17. x 2 - 3x + 4 = 2

×