Your SlideShare is downloading. ×

Beam

1,203

Published on

El Beam es un sistema especialmente ideado para reconocer el terreno en el frente de escavación de las tuneladoras, está basado en el empleo de electrodos colocados en la rueda de corte, en el escudo …

El Beam es un sistema especialmente ideado para reconocer el terreno en el frente de escavación de las tuneladoras, está basado en el empleo de electrodos colocados en la rueda de corte, en el escudo de la máquina y en el propio terreno como referencia.
http://conbotassucias.wordpress.com/

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,203
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. © 2004 GEOHYDRAULIK DATA
  • 2. Contents 1 Company Profile 2 Description of BEAM-Method 3 BEAM-Systems 3.1 BEAM-TBM Shield 3.2 BEAM-TBM Gripper 3.3 BEAM-Microtunnelling 3.4 BEAM-Drill&Blast 3.5 BEAM-Perimeter 4 Case Studies © 2004 GEOHYDRAULIK DATA
  • 3. Company Profile Since 1986 GEOHYDRAULIK DATA performs modern geophysical and hydrogeological services for exploration of subsurface structure and ground characteristics. Our experience is asked to contribute to the efficient and successful realization of national and international projects in: • Tunnelling • Groundwater • Rock and soil engineering • Dams • Buildings • Mineral deposits • Environment
  • 4. Company Profile Beside the classical state-of-the-art methods like geoelectrics, induced polarization, electromagnetics, seismics, well-hydraulics and hydrogeological modelling, we use advanced in-house developed and patented geophysical techniques. Advanced Geophysical Systems These are especially designed for certain fastidious exploration targets and special survey demands. Advantages of our services: • high detection potential • rapid performance • reliable results • time reduction and cost savings © 2004 GEOHYDRAULIK DATA
  • 5. Applications and Projects Well-Hydraulics, Germany Transmissivity determination in sandstones. Electromagnetics, Minnesota Electromagnetics , Germany Time Domain Electromagnetics for UXO and pipe detection. Geoelectrics, Samoa, Honduras Geoelectrics, Mali, Cameroon, Burundi, Kenya Seismics, Tomography, Pakistan At a dam site in Pakistan, bedrock depth an rock modul determination Seismics and Geoelectrics, Nepal Tunnel-Geophysics, Italy Electrical ahead monitoring while TBM-boring for prediction and documentation along Explorations for groundwater and for dam reservoirs. For depth exploration of dam foundation rock and reservoir permeability investigations. the 9,3 km long Ginori heading. Tunnel-Geophysics, Germany BEAM-induced Polarization measurement to locate open karst-cavities within the perimeter of Irlahüll Tunnel, Geisberg Tunnel and Stammham Tunnel for the high speed railroad link Nuremberg-Ingolstadt Tunnel-Geophysics, Switzerland Early detection and warning of changes in critical geotechnical-geological and hydrogeological ground conditions with BEAM, Gotthard Base Tunnel © 2004 GEOHYDRAULIK DATA
  • 6. References AEKH Arge Erkundung Karsthohlräume (VPM, GHD, DMT, GGD, Daldrup) Allai Khwar Consultants, Peshawar, Pakistan Allianz Immobilien GmbH Amt für Katastrophenschutz und KMRD Kiel ANBEL, Milano ARCADIS ASAL und Partner GmbH ARCADIS Trischler und Partner GmbH ARGE BIE-WA VE3 Zentraler Tunnel, Berlin Assmann Beraten und Planen GmbH AVS Abwasserverband Saar AWB Abfallwirtschaftsbetrieb BASF AG Baucontrol Bingen Baugrundinstitut Franke-Meißner GmbH, Wiesbaden Beratende Ingenieurgesellschaft Dr.Ing. G. Björnsen mbH Bezirksregierung Trier Bickardt Bau AG Bieber Eisen Baustoffe GmbH BISON Inc. Minneapolis, USA Boden und Wasser, Büro für Hydrogeologie, Aichach Boden und Wasser, Hurler, März und Dr. Schaar BLS AlpTransit AG, Schweiz Brandt, Gerdes, Sitzmann Umweltplanung BTS GmbH (Hamburg) Buchart Horn GmbH Bundesanstalt für Geowissenschaften und Rohstoffe Bundesministerium für wirtschaftliche C.A.V.E.T. ( Consortio Alta Velocita Deutsche Bundesbahn, Direktion Stuttgart Deutsche Bundesbahn, Projektgruppe H / W Nord, Hannover Dilger GmbH Diverse private Bauherren DORSCH CONSULT GmbH Dr. Hug Geoconsult GmbH Dr. Köhler GmbH Dr. U.P. Büchi und E.R. Müller AG, Schweiz Dr.-Ing. Steffen GmbH Electric Power Corporation, Apia, Western Samoa ENNE, Tegucigalpa, Honduras Erdbaulaboratorium Erb & Borchert Erdbaulaboratorium Essen Erkelenzer Bohrgesellschaft Förderverein Solebad Kusel Frank & Bumiller GmbH GBS Grundbau-Bohrtechnik-Spezialtiefbau Gebäudemanagement Schleswig-Hostein AöR Gemeinde Bessenbach, Spessart Gemeinde Bexbach, Saarland Gemeinde Eppelborn, Saarland Gemeinde Waltenhofen, Allgäu Gemeindewasserwerke Nonnweiler GEOBIT Ingenieurgesellschaft mbH Geobüro RUK GmbH Geo Consult GEOFOR, Cameroun Geologengruppe Lötschberg-Basistunnel, Schweiz Geotec Dr. J. Bruggey Geotechnik GmbH geotechnik ingenieure witt – jehle – kriechbaum GFB Kiel Glyco Metallwerke Görger + Zorn GmbH GREBNER Beratende Ingenieure GmbH Grundbauingenieure Steinfeld und Partner Heidelberger Zement AG HNK Ingenieurgesellschaft Hochtief AG hpc Harres Pickel Consult GmbH IFB Eigenschenk GmbH ILF Ingenieurgemeinschaft Lässer-Feizlmayr Innenministerium von NRW Ingenieurberatung Dipl.-Ing. F. Oberländer Ingenieurbüro Hanisch + Pfaff Ingenieurbüro Roth Ingenieurbüro Röver und Partner GmbH Institut für Geotechnik Dr. Zirfas Institut für Industriellen und Geotechnischen Umweltschutz Dr. Baur GmbH Interdisziplinäre Entwicklunghilfe e.V. ( Keniahilfe ) IPR Ingenieurbüro Pappon und Riedel Johann Georg Adler III GdbR Kampfmittelbeseitigungsdienst BadenWürttemberg Kampfmittelräumdienst Rheinland-Pfalz KIRCHNER GmbH & Co. KG KOCKS CONSULT GmbH Köbig GmbH Konversionskonsortium ASAL und Partner GmbH / Kocks Consult GmbH Kraftwerke Mainz-Wiesbaden AG Kreis Bad Kreuznach Kreisverwaltung Bad Kreuznach Kreisverwaltung Bernkastel-Wittlich Kreisverwaltung Donnersberg LAHMEYER INTERNATIONAL GmbH Landesarbeitsgemeinschaft Entwicklungshilfe Landeshauptstadt Stuttgart Tiefbauamt Landkreis Marburg - Biedenkopf Main-Taunus-Kreis Eigenbetrieb Abfallentsorgung Malzfabrik Gebler & Co. Martin Peters GmbH MAX BÖGL Bauunternehmung MDS, Paris Metallgesellschaft AG Middle Marsyangdi HEP, NepalNOW Wasserzweckverband Nordost-Württemberg NWS Regional AG Oberfinanzdirektion Hannover PREUSSAG AG Projektgruppe Mainzer Ring Prof. Meier & Partner Pruy KG QM ~ GEO Dipl.-Ing. W. Romberg Rathscheck Schieferbergbau Regierungspräsidium Stuttgart, KMBD Regional Bus Stuttgart Renolit-Werke AG Rohrbach + Schmees RWE Saarstahl AG Sachverständigenbüro Dr. Prösl Sandbarth GmbH Schröder Planung GmbH Simon + Hartmann GmbH Smoltczyk & Partner GmbH Spieser Sand GmbH Staatsbauamt Kaiserslautern Staatshochbauamt Leipzig Stadt Bonn Stadt Crailsheim Stadt Frankenthal Stadt Friedrichshafen Stadt Kaiserslautern Stadt Karlsruhe, Bauamt Stadt Kronberg / Ts. Stadt Schwäbisch Hall Stadt Stutensee (Bauamt) Stadtbauamt Zweibrücken Stadtverwaltung Bitburg Stadtverwaltung Trier Stadtwerke Annweiler Stadtwerke Michelstadt SWR Baden-Baden Tahal Consulting Engineers, San Salvador Technisches Büro Dr. H. Marx GmbH Terrasond GmbH Thüringer Bohrgesellschaft mbH Tiefbauamt Esslingen Umlandverband Frankfurt UMT Ingenieurgesellschaft Umweltamt Aachen Umweltamt Mainz ........... © 2004 GEOHYDRAULIK DATA
  • 7. Real-Time Ground Prediction While Tunnel-Drivage © 2004 GEOHYDRAULIK DATA
  • 8. Tunnel-Geophysics Real-Time Ground Prediction While Tunnelling means lowering risks, cost savings and time reduction • planning optimum security and lining measures • prevention of tunnel collapse and damage • no need or minimizing of ahead drillings • prevention of TBM-injuries • high advancement rates Reference: Ministry of formations and research Reference: Media centre of the building and environmental protection authority Reference: Media centre of the building and environmental protection authority © 2004 GEOHYDRAULIK DATA
  • 9. Tunnel-Geophysics A new powerful tunnel-geophysical exploration tool used for geological, hydrogeological and geotechnical prediction and documentation accompanying • TBM - headings • Drill + Blast drives • Perimeter investigations © 2004 GEOHYDRAULIK DATA
  • 10. BEAM Method BEAM is a focused-electrical frequency domain induced polarization method. The principle of BEAM is based on sending a guard current through an enclosing electrode A1 and a monitoring current of same voltage sign through an 2D-sketch of guard 3D-finite elements calculated model of BEAMinner electrode and focused current focused current and voltage ahead of the face A0 which is therefore forced into the forefield ground. 3D simulation of the BEAM focusing effect (ETH Zürich, Switzerland) © 2004 GEOHYDRAULIK DATA
  • 11. BEAM Method System Layout A1 (+) guard electrode (e.g. shield, cutter head, armed lining) am n t be urre c remote access (e.g. office) visualization of geological classification in real-time ~ ~ B (-) return electrode (e.g. steel rod, anchor etc. inside or outside the tunnel) A0 (+) measuring electrode (e.g. cutter head, excavation tools) BEAM unit (e.g. steering cabin) © 2004 GEOHYDRAULIK DATA
  • 12. BEAM Method Measuring parameters Resistances frequency-dependent: R(f1) = U(f1) / I0(f1)[Ohm], R(f2) = U(f2) / I0(f2)[Ohm] with U(f) – constant voltage and I0(f) – monitoring current Percentage frequency effect (PFE): PFE = 100 x (R(f1) – R(f2)) / R(f1) [%] with f1 < f2. Geological interpretation • Rock mass classification based on PFE values for geotechnical assessment Percentage Frequency Effect • PFE is a petrophysical property relating to the ability of rock mass to store electrical energy • Porosity Pn (karst-cavities, faults, fractures) is related to PFE: Pn ~ 1/PFE • Water-bearing and/or airfilled high porosity-zones can store little electrical energy and therefore are identified by low PFE • Sand, clay layers, piles, boulders, concrete etc. are characterized by typical PFE-anomalies which are reliable detected with BEAM method in real-time © 2004 GEOHYDRAULIK DATA
  • 13. BEAM Ground Prediction in Hard Rock and Soft Ground Porosity High Medium Low Hard Rock high water-/ gas-bearing zones coal, ore-bearing zones Soft Ground Type 3: critical rock sections: e.g. caves, canals, cellars, gas-bearing zones Type 2: e.g. sand gravel Rock mass type 1: critical rock sections: e.g. clay, silt, wood, metal, UXO´s, concrete © 2004 GEOHYDRAULIK DATA
  • 14. Visualization 1 2 Display presentation and interpretation of real-time-processing Geophysical-geological documentation 3 Detail-interpretation of critical rock sections © 2004 GEOHYDRAULIK DATA
  • 15. Display Real-time-processing of data, resulting in a rock mass classification of the TBM forefield and a ground change warning system Ground change warning system ± 0m face > 0m forefield < 0m passed Percentage Frequency Effect (PFE) ”principle of traffic lights” A, B, C top fault zones Geological rock classification © 2004 GEOHYDRAULIK DATA
  • 16. Display Real Data TBM Project with BEAM-Light in Fast Motion approx. 1:50min space key = next chart © 2004 GEOHYDRAULIK DATA
  • 17. BEAM Hard Rock Prediction high water-/ gas-bearing zones „fault zone“ „no ground change“ „no ground change“ „change to ground improvement“ PFE-Änderung „change to ground improvement“ „change to critical ground“ „change to critical ground“ „unhomogenous fractured aquifer“ © 2004 GEOHYDRAULIK DATA
  • 18. BEAM Soft Ground Prediction Combined Induced Polarization (PFE) and Resistivity (R) Measurements for lithological classification and object identification Percentage Frequency Effect PFE [%] R e s i s t i v i t Y R [Ωm] Low cavities saltwater-filled waste disposal clay, loam metals, UXO´s Medium cavities water-filled sand/ gravel wet organic material wood High cavities gas-/air-filled sand/ gravel dry boulders, blocks armed concrete © 2004 GEOHYDRAULIK DATA
  • 19. BEAM-Systems Overview Drivage Type BEAM-System Exploration range forefield integral monitoring* Shield-TBM forefield scan monitoring perimeter monitoring BEAM-TBM forefield integral monitoring* Gripper-TBM forefield scan monitoring Microtunnelling forefield integral monitoring* forefield monitoring Drill + Blast BEAM-D+B forefield scan monitoring Existing Tunnels BEAM-Perimeter perimeter * BEAM forefield integral monitoring: no need of support from TBM supplier necessary © 2004 GEOHYDRAULIK DATA
  • 20. BEAM-TBM Shield Drivage Type BEAM-System Exploration range A1 Guard electrode A0 Measuring electrode Shield TBM BEAM-TBM forefield integral monitoring* shield cutter head, cutting wheel * no support from TBM supplier necessary © 2004 GEOHYDRAULIK DATA
  • 21. BEAM-TBM Shield © 2004 GEOHYDRAULIK DATA
  • 22. BEAM-TBM Gripper Drivage Type BEAM-System Exploration range A1 Guard electrode A0 Measuring electrode Gripper-TBM BEAM-TBM forefield integral monitoring* armed lining, steel archs and anchors cutter head * no support from TBM supplier necessary © 2004 GEOHYDRAULIK DATA
  • 23. BEAM-TBM Gripper Drivage Type BEAM-System Exploration range A1 Guard electrode A0 Measuring electrode Gripper-TBM BEAM-TBM forefield scan monitoring cutter head, armed lining single excavation tools © 2004 GEOHYDRAULIK DATA
  • 24. BEAM-TBM Mircotunnelling Drivage Type BEAM-System Exploration range A1 Guard electrode A0 Measuring electrode Microtunnelling BEAM-TBM forefield integral monitoring* shield cutter head, cutting wheel * no support from TBM supplier necessary © 2004 GEOHYDRAULIK DATA
  • 25. BEAM-Drill & Blast Drivage Type BEAM-System Exploration range A1 Guard electrode A0 Measuring electrode Drill + Blast BEAM-D+B forefield monitoring armed lining, steel archs and anchors drilling rods (jumbo) © 2004 GEOHYDRAULIK DATA
  • 26. BEAM-Drill & Blast Drivage Type BEAM-System Exploration range A1 Guard electrode A0 Measuring electrode Drill + Blast BEAM-D+B forefield scan monitoring armed lining, steel archs and anchors single drilling rod © 2004 GEOHYDRAULIK DATA
  • 27. BEAM-Perimeter Drivage Type BEAM-System Exploration range A1 Guard electrode A0 Measuring electrode Existing Tunnels BEAM-Perimeter perimeter armed lining, steel archs and anchors mobile hand held drilling rod © 2004 GEOHYDRAULIK DATA
  • 28. Case Studies TBM heading Ginori-Tunnel, Italy Visualization BEAM-TBM Forefield Scan Monitoring System 6.3 m diameter telescopic shield machine Compact limestones with water-bearing subvertical karst and fault zones © 2004 GEOHYDRAULIK DATA
  • 29. Case Studies TBM heading Ginori-Tunnel, Italy Geophysical-geological documentation 1500-3150 m of total length 9300 m 6.3 m diameter telescopic shield machine, BEAM-TBM Forefield Scan Monitoring System Compact limestones with water-bearing subvertical karst and fault zones © 2004 GEOHYDRAULIK DATA
  • 30. Case Studies TBM heading Ginori-Tunnel, Italy BEAM results of a „water-inrush“ zone 3D horizontal projection of BEAM results predicting different ground conditions along a TBM section of the Ginori Tunnel (Italy) © 2004 GEOHYDRAULIK DATA
  • 31. Case Studies TBM heading Ginori-Tunnel Italy Confirmation of BEAM-predicted fault-karst zones by measured water inrush zones water quantity water inrush tunnelmeter © 2004 GEOHYDRAULIK DATA
  • 32. Case Studies TBM heading Ginori-Tunnel Italy Break through, September 2003 © 2004 GEOHYDRAULIK DATA
  • 33. Case Studies Lötschberg Base Tunnel Switzerland Drill + Blast BEAM-D+B System Investigation of limestone/shale interface © 2004 GEOHYDRAULIK DATA
  • 34. Case Studies Case study Perimeter investigation of existing tunnels Railway link Nuremberg-Ingolstadt, Germany BEAM-Perimeter System Investigation of airfilled karst cavities © 2004 GEOHYDRAULIK DATA
  • 35. Case Studies Perimeter investigation of existing tunnels Railway link Nuremberg-Ingolstadt, Germany BEAM-Perimeter System Investigation of airfilled karst cavities © 2004 GEOHYDRAULIK DATA
  • 36. Case Studies Perimeter investigation of existing tunnels Railway link Nuremberg-Ingolstadt, Germany BEAM-Perimeter System Investigation of airfilled karst cavities © 2004 GEOHYDRAULIK DATA
  • 37. Case Studies Perimeter investigation of existing tunnels Railway link Nuremberg-Ingolstadt, Germany BEAM-Perimeter System Investigation of air filled and sand filled karst cavities © 2004 GEOHYDRAULIK DATA
  • 38. Case Studies Perimeter investigation of existing tunnels Railway link Nuremberg-Ingolstadt, Germany Empirical evaluation of cavity detection limit due to BEAM „Percentage Frequency Effect (PFE)“ anomalies (PFE<-5%) verified at cavity situations © 2004 GEOHYDRAULIK DATA
  • 39. Case Studies TBM heading in South-Switzerland Gripper TBM 9.5 m diameter, BEAM-TBM Forefield Integral Monitoring (BEAM Light) Gneis with subhorizontal thrust faults - A, B, C top failure zones © 2004 GEOHYDRAULIK DATA
  • 40. Case Studies TBM heading in South-Switzerland © 2004 GEOHYDRAULIK DATA
  • 41. Advantages and Features • Permanent automatic high-resolution forward prediction and perimeter exploration while tunnel advance • Realization of high advancement rates without disturbance and stops of tunnelling work • Early detection and warning of changes in geotechnical-geological and hydrogeological ground conditions like fault/karst zones, cavities or higher water-bearing zones • Applicable for all kind of hard rock and soft ground TBMs and drill+blast • Reliable real-time results for geological classification and documentation of forefield ground which are shown on the • Optimum planning ofsreen for fast on-site decisions safety and lining measures in advance to shelter staff, equipment and tunnel • No percussion or core drilling is needed to use BEAM • BEAM works continous and self-instructional based on an advanced evaluation software • Time reduction and cost savings by several reasons depending on individual project conditions © 2004 GEOHYDRAULIK DATA

×