Your SlideShare is downloading. ×
Resumen 14 10 09
Resumen 14 10 09
Resumen 14 10 09
Resumen 14 10 09
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Resumen 14 10 09

844

Published on

Published in: Education, Technology, Business
0 Comments
1 Like
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
844
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
23
Comments
0
Likes
1
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. MÉTODOS CUANTITATIVOS RESUMEN DE LA SESIÓN 13/10/09 MODELO GENERAL DE REGRESIÓN LINEAL MÚLTIPLE En el modelo general de regresión lineal múltiple se pretende explicar una sola variable Y dependiente, endógena y explicada con por lo menos una variable X independiente, exógena y explicativa. En clase vimos un ejemplo en el que buscábamos explicar los ingresos de un supermercado (Y) por los habitantes del municipio donde se encuentra el supermercado (X1) y los metros cuadrados del supermercado (X2) Y = f ( X1, X 2 ) La tabla de datos con la que empezamos a trabajar es la siguiente: Ingresos Población Superficie 198 70 21 209 35 26 197 55 14 156 25 10 85 28 12 187 43 20 43 15 5 211 33 28 120 23 9 62 4 6 176 45 10 117 20 8 273 56 36 Si la relación existente entre las variables fuera de tipo lineal utilizaríamos la siguiente expresión: y i = α + β1 xi1 + β 2 xi 2 Sin embargo, puede ser que la relación entre las variables no sea perfecta, por lo que introducimos a la expresión anterior un término aleatorio que corresponde con variables que no hemos tenido en cuenta yi = α + β1 xi1 + β2 xi 2 + εi El sistema de ecuaciones que hay que resolver es el siguiente:
  • 2. 198 = α + β1 × 70 + β 2 × 21 + ε 1 209 = α + β1 × 35 + β 2 × 26 + ε 2 ... 273 = α + β1 × 56 + β 2 × 36 + ε 13 Nuestro objetivo es que los valores de las incógnitas sean lo más pequeños posible. Determinaremos cuáles son los valores más adecuados de los coeficientes del modelo para alcanzar este objetivo: α = a, β1 = b1, β2 = b2 Llamaremos residuos a los valores que toman las incógnitas en la solución del sistema de ecuaciones: ε i = ei Debemos encontrar los valores de los coeficientes que minimizan la suma de los cuadrados de los residuos n 2 [ min ∑ e 2 i ] Min ∑ ( yi − a − b1 xi1 − b2 xi 2 )   i =1  Después de calcular los valores de los parámetros de la combinación lineal, podremos construir el siguiente modelo de ajuste lineal: yi = a + b1 xi1 + b2 xi 2 ˆ Los valores calculados para la variable dependiente mediante el modelo de ajuste lineal serán los llamados valores estimados. Después de la explicación teórica del modelo y de lo que buscamos con él empezamos a trabajar con Excel:
  • 3. 1) Construimos la matriz X Matriz X 1 70 21 1 35 26 1 55 14 1 25 10 1 28 12 1 43 20 1 15 5 1 33 28 1 23 9 1 4 6 1 45 10 1 20 8 1 56 36 2) Calculamos la matriz traspuesta de X 1 1 1 1 1 1 1 1 1 1 1 1 1 70 35 55 25 28 43 15 33 23 4 45 20 56 21 26 14 10 12 20 5 28 9 6 10 8 36 3) Calculamos la matriz Xt*X Matriz Xt*X 13 452 205 452 19828 8452 205 8452 4343 4) Invertimos esta última matriz Matriz (XtX)-1 0,40146598 -0,0063017 -0,00668629 -0,0063017 0,00039483 -0,00047093 -0,00668629 -0,00047093 0,00146234 5) Calculamos la matriz Xt*Y
  • 4. Matriz XtY 2034 82495 38769 6) Para calcular la matriz B que será la que nos marque llos valores de las variables explicativas y el término aleatorio tenemos que multiplicar las matrices (XtX)-1*XtY. Obtenemos: B 37,50230036 1,496287793 4,244624453 Por lo tanto, el modelo es el siguiente: Y= 37,5 +1,49*población + 4,24 m^2 + ε Con este modelo obtenemos las siguientes predicciones de ingresos y las desviaciones: Y.predicho Residuos 231,3795594 -33,37955939 200,2326089 8,767391105 179,2228713 17,77712868 117,3557397 38,64426028 130,333852 -45,333852 186,7351645 0,264835479 81,16973952 -38,16973952 205,7292822 5,270717786 110,1185397 9,881460323 68,95519825 -6,95519825 147,2814956 28,71850442 101,3850518 15,61494816 274,1008971 -1,100897079 Para calcular la SCR elevamos todos los residuos al cuadrado y los sumamos, obteniedo así un SCR de: 7756,21416

×