STI Course A Closer Look at Singapore Math by Yeap Ban Har

2,147 views
1,972 views

Published on

This weekend course conducted at Scarsdale Teachers Institute, New York focused on the use of anchor problem to enhance the teaching and learning of mathematics.

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,147
On SlideShare
0
From Embeds
0
Number of Embeds
129
Actions
Shares
0
Downloads
83
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

STI Course A Closer Look at Singapore Math by Yeap Ban Har

  1. 1. June 2010<br />usinganchorproblems<br />insingaporemath<br />Yeap Ban Har<br />Scarsdale Teachers Institute<br />New York USA<br />
  2. 2. Problem 1<br />Arrange cards numbered 1 to 10 so that the trick shown by the instructor can be done. In this problems, students get to talk about the positions of the cards using ordinal numbers. They get to use ordinal numbers in two contexts – third card from the left and third card from the top. The problem itself is too tedious to describe using words. Just come for the institute next time round!<br />
  3. 3. Teachers solved the problems in different ways.<br />
  4. 4. The above is the solution. What if the cards used are numbered 1 to 9? 1 to 8? 1 to 7? 1 to 6? 1 to 5? 1 to 4?<br />
  5. 5. Problem 2<br />This is a game for two players. The game can start with any number of paper clips, say, 24. The rule is that a player removes exactly 1 or 2 clips when it is his / her turn. The winner is the player who removes the last lot of paper clips. Find out a way to win the game.<br />
  6. 6. It turns out that the winning strategy is to leave your opponent with a multiple of three. What if the rule is changed to removing exactly 1, 2 or 3 clips? The winning strategy is to leave your opponent with a multiple of four. Did you notice a pattern?<br />Problem 2<br />In this anchor problem and its variant(s), the concept of multiples emerges. Anchor problem does that – to emerge a mathematical concept.<br />
  7. 7. Problem 3<br />The initial textbook problem was changed into the second one. Anchor problems and its variants allow students to encounter a range of problems with mathematical variability (Dienes). In this case students encounter both arithmetic and algebraic problems, and also problems with continuous as well as discrete quantities. Although both problems involve the same bar models, the mathematics involved are different.<br />
  8. 8.
  9. 9. 273<br />Najib<br />Pascal<br />297<br />Goggle<br />Gittar<br />
  10. 10. Problem 4<br />Mrs Liu spent 1/5 of her monthly salary on a handbag,  of the remainder on a vacuum cleaner and saved the rest. She saved $1890. Find her monthly salary.<br /><ul><li> = half
  11. 11. = three-eighths
  12. 12. = four-sevenths </li></ul>The anchor problem was varied systematically so that students get to learn different skills in bar modeling. Notice the different bar modeling skills needed to solve the problem when  is changed from half to three-eighths to four-sevenths.<br />This problem is taken from a Singapore school’s mock examination to prepare students for the national examination at the end of grade six.<br />
  13. 13. Three methods to solve the third problem.<br />
  14. 14. Problem 5<br />Think of a 4-digit number, say, 1104. Jumble the digits up to form a different number, say, 0411. Fin d the difference between the two numbers (1104 – 411). Write the difference on a piece of paper. Circle any digit. Tell me the digits you did not circle and I will tell you the one you circled.<br />
  15. 15. How can you tell what the circled number is given the numbers which are not circled?<br />
  16. 16. Problem 6<br />Piece the pieces together so that two adjacent values are equal. Initially students can be asked to simply piece any two pieces together. Later they can be asked to form a single ‘snaking’ figure. Finally they can be challenge to form a square.<br />
  17. 17.
  18. 18. Problem 7<br />Place digits 0 to 9 in the five spaces to make a correct multiplication sentence – no repetition. 2-digit number multiplied by 1-digit number to give a 2-digit product.<br />x<br />
  19. 19. Why are there so few odd products?<br />
  20. 20. Summary<br />anchorproblems<br />
  21. 21. Roles<br />To emerge the idea of multiples<br />To provide opportunities to use ordinal numbers in varied situations<br />To provide opportunity to solve arithmetic and algebraic problems that involve continuous and discrete quantities<br />To provide opportunity to learn different skills in using bar models<br />To provide opportunity to do drill-and-practice while <br />
  22. 22. Participants working through anchor problems they created.<br />workshopactivity<br />
  23. 23.
  24. 24.
  25. 25.
  26. 26. References<br />theoriesandmodels<br />
  27. 27. Polya<br />Problem-Solving Stages<br />Understand<br />Plan<br />Do <br />Look Back<br />Polya<br />
  28. 28. Newman<br />Difficulties in Word Problem Solving<br />Read<br />Comprehend<br />Know Strategies<br />Transform<br />Do Procedures<br />Interpret Answers<br />Newman<br />
  29. 29. Dienes<br />Principle of Variability<br />Mathematical Variability<br />Perceptual Variability<br />Dienes<br />
  30. 30. Krutetskii<br />The ability to pose a ‘natural’ question as a form of mathematical ability<br />Krutetskii<br />Krutetski (1976). The psychology of mathematical abilities in school children. Chicago, IL:<br />University of Chicago.<br />
  31. 31. Big Ideas<br />Visualization<br />Patterning<br />Number Sense<br />Metacognition<br />Communication<br />Big Ideas<br />
  32. 32. Beliefs<br />Interest<br />Appreciation<br />Confidence<br />Perseverance<br />Monitoring of one’s own thinking<br />Self-regulation of learning<br />Attitudes<br />Metacognition<br />Numerical calculation<br />Algebraic manipulation<br />Spatial visualization<br />Data analysis<br />Measurement<br />Use of mathematical tools<br />Estimation<br />Mathematical Problem Solving<br />Reasoning, communication & connections<br />Thinking skills & heuristics<br />Application & modelling<br />Skills<br />Processes<br />Concepts<br />Numerical<br />Algebraic<br />Geometrical<br />Statistical<br />Probabilistic<br />Analytical<br />Mathematics Curriculum Framework<br />

×