数学物理漫谈

  • 502 views
Uploaded on

 

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
502
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
13
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. SNJ‡ êÆÔnû! ±j ˜uŒÆêƉÆX9úôŒÆêƉƥ% ÜÜêÆØ ÜS, 2005c10' ±j êÆÔnû!
  • 2. SNJ‡ SNJ‡ 1 VØ 2 êÆ[†êÆÔn 3 ²YÔn†êÆ 4 g“Ôn†êÆ 5 y“Ôn†êÆ ±j êÆÔnû!
  • 3. SNJ‡ SNJ‡ 1 VØ 2 êÆ[†êÆÔn 3 ²YÔn†êÆ 4 g“Ôn†êÆ 5 y“Ôn†êÆ ±j êÆÔnû!
  • 4. SNJ‡ SNJ‡ 1 VØ 2 êÆ[†êÆÔn 3 ²YÔn†êÆ 4 g“Ôn†êÆ 5 y“Ôn†êÆ ±j êÆÔnû!
  • 5. SNJ‡ SNJ‡ 1 VØ 2 êÆ[†êÆÔn 3 ²YÔn†êÆ 4 g“Ôn†êÆ 5 y“Ôn†êÆ ±j êÆÔnû!
  • 6. SNJ‡ SNJ‡ 1 VØ 2 êÆ[†êÆÔn 3 ²YÔn†êÆ 4 g“Ôn†êÆ 5 y“Ôn†êÆ ±j êÆÔnû!
  • 7. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ êÆÔn†nØÔn ôv¬§ §^=ŠJ¯µ/UÄwŠ·êÆÔn†nØÔ n'«yº0 2004?a¬ïÄ)±¡xsk^=Š£‰µ/ö'8' ؘ$quot;0Úz&XÖ¿µ/êÆÔn6êƧ nØ Ôn95Ônquot;0 Ágµ/œ'9~ Ѓ'Ï4(2005-9-28) ))Pôv¬Ó“ À©HmêÆïĤ0 ±j êÆÔnû!
  • 8. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ êÆÔn†nØÔn êÆ êÆÔn ÔnÆ nØÔn g,F ±j êÆÔnû!
  • 9. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Ÿo¬kêÆÔnº ­þ)ÃêÆÔn§‰'<õ §Òk ù€Æ¯quot; êÆÚÔn)5Ñ5uég,F'@£quot; Œ´§‚g'uÐq22‡Ñé¢Sy–Ú¯K'ïÄ, UìnØSQ'quot;{¦ugduÐquot; ù«aF'uÐڇÑv¡w5Øv´êÆ[½ÔnÆ[g „gW'œåiZ§¢¢Sþ22k¿ŽØ '¢SA^quot; ±j êÆÔnû!
  • 10. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Ÿo¬kêÆÔnº 9XOê´ég,'¯œ§¢êÆ[9©uAûXe'¯ Kµ x n + y n = zn Qn > 2žvkš²…'êA(¤猽n¤quot; ù‡¯K'@Ø)vk?Û¢S¿Âquot; êÆ[ Aûù‡¯KuÐ Œ'“êêØ'nØquot; ùnØ'˜Ü©QyQ'OŽÅž“Q—è†cènØ¥ åX­‡Š^quot; ±j êÆÔnû!
  • 11. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Ÿo¬kêÆÔnº q9XlèGÿþ1¢S¯KuÐѲ¡AÛÆ£ F1¤ ڇ©AÛ£Gauss)quot; 9u²¡AÛÆ¥k9²I‚'IÊú£v†‚©˜Xk …ak˜^²I‚¤'?Ø— ¤¢'šîAÛquot; ùq¢´˜‡vky¢F'Ė?ا¢¥¡AÛÚV­ AÛQy“¤”Eâ£XCAT×£¤þkA^quot;  ¡¬! AÛÆQÔn¥'˜A^quot; ±j êÆÔnû!
  • 12. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Ÿo¬kêÆÔnº ÔnÆ'ïÄ¥k‡quot;äNy–Ú¯K'nØJÑquot; ¢¨B© o«Ä)'Š^åµÚå§b^å§fŠ^å§ rŠ^åquot; ÔnÆ[XEinstein£OÏdquot;¤J¦ùo«Š^å'˜‡ ژ'nØquot; d¦‚‰Xˆ«}Á§Jш«nØFquot; ±j êÆÔnû!
  • 13. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Ÿo¬kêÆÔnº µ§˜‡ÔnF´Ä¤õ'̇sO´´ÄJø ¢¨Œ ±¨y'ýóquot; ùFk'‰Ñ ýó§¢8c'¢¨^‡„Ã{¨y§ ùÜ©'ÔnxŒ±¡ŠnØÔn¶ k'„?QêÆí'0㧄vk‰Ñ¢¨Œ±¨y'ý ó§ùÜ©'ÔnxŒ±¡ŠêÆÔnquot; ±j êÆÔnû!
  • 14. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ êÆ[†êÆÔn êÆÔn'ÑyØ´éÈ'¯œquot; Q²YÔnuÐ'žÏ§Ø ¢¨ÔnÆ[§ÔnÆ[Ó ž´êÆ[§XNewton, Lagrange, Laplace, Fourier, Gauss, Maxwell1quot; Einsteink©ÙuvQêÆD““Mathematische Annalen”þquot; êƆÔnˆg'uЦ§‚Åì©lquot; êÆÔn´êÆ[†ÔnÆ[ŒU¡Ó97'˜+§g c5Åì¹#å5quot; ±j êÆÔnû!
  • 15. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ êÆ[†êÆÔn † g“§˜•Œ'êÆ[é97ÔnÆquot;XHilbert! v5êÆÔn{6§ïÄvPƒéضWeylïÄvP ƒéا!v5žm!˜m!ԟ6¶CartanïÄvP ƒéضvon NeumannïÄvþfåÆquot; kêÆ[ϏêÆÔnéêÆ)kXíÄ ïÄêÆ Ôn§¦‚¿vkéÐ'ÔnÔö§é¤ïÄ'é–'Ôn ¿ÂÚÔn폿Ø97quot; ±j êÆÔnû!
  • 16. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ êÆ[†êÆÔn êÆ[Œ±¥b'˜‡¯¢´µ¦‚Œ±UìêÆSQ'S ÆuÐêƧ ØU97¦‚nØ'A^quot; lÔnÆ[@p'‡quot;´µØ´ÔnA^ uÐ'êÆn ØQÔn¥k^quot; ·‡<'²¨´µÉÔnÆ[éu¦‚'óŠJøî‚Ä :'êÆóŠ,QêÆþ魇§¢Ø‡Ï4& ÔnÆ ['3üÚ­Àquot; ±j êÆÔnû!
  • 17. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ u<êÆ[†êÆÔn Žk)40c“–¯Princetonp1ïĤ'ž ÿ§EinsteinQgCú¿•¦H ژ|Ø'Ž{§F 4¦ëù˜¡'ïÄquot; EinsteinQk)'8‡p˜cgC'©Ù§Œ´ü‡r~ v @©Ù„2Q@quot; Einstein'“Ö5JPk)µ/xoŒ±òEinstein'© ٘Q8‡p˜ƒØnQº0 k)Ø@Einstein'Ž{k#n§vk‹‘¦‰Ú˜| ؐ¡'ïħ ´U‰gC'êÆïÄquot; ±j êÆÔnû!
  • 18. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ u<êÆ[†êÆÔn A›cv §k)¤uÐ'Chern-WeilnØ ÚChern-SimonsnØQÔn¥&P'A^quot; EinsteinQژ|ؐ¡'ãåÄ)þ&@´”} § ,¦J¦Ú˜nØ'gŽ˜†ò‰ e5§¤y“nØ ÔnÚêÆÔn'SgŽquot; k•Œ¤Ò'<˜½´k̄'<œ ±j êÆÔnû!
  • 19. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ u<êÆ[†êÆÔn uێk)é­ÀêÆÔn'ïħ¦ïÆxÜm¦k) ¥s‰ÆêÆïĤ?˜?ïħonØÔnïÄ¿Ì ?quot; Üm¦k)uêxŒÆêÆX§É’uͶÚOÔnÆ[4 V£R©H©Fowler¤§QÅ£N©Bohr¤Ú |£W. Pauli¤bóŠquot; ¦## u¯k)!£)k)!ûˉk)!Á­k) 1ïÄ)quot; ±j êÆÔnû!
  • 20. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ u<êÆ[†êÆÔn ºék)éêÆÔnkÏ'ïħ~Xéuy¨wk )JÑ'S‰|؆‡©AÛéänØ'9X‰Ñv­‡  zquot; ¦## êÆÔnïĐ¡'˜¥jåþquot;y² *¿ ™5ICߎ'±•‰k)Úy²vxõߎ'4Ž¸k) с´¦'ïÄ)quot; ±j êÆÔnû!
  • 21. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ u<êÆ[†êÆÔn #‡Ík)Qþ­V²«c“=m©†¨wk)܊cI S‰|ؐ¡'ïħ´·sêÆÔnïÄ'mÿöƒ˜quot; sS„kxõÙ¦l¯êÆÔnïÄ'cêÆ[§QdØ U˜˜J9 quot; ±j êÆÔnû!
  • 22. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ u<êÆ[†êÆÔn £¤Ðk)¼&Fieldsø'ü‘óŠÑ†êÆÔnk9quot; ¦†SchoenAû' Ÿþߎ´PƒéØ¥'¯Kquot; ¦¤y²'CalabiߎQ‡unØ¥å9…Š^quot; ±j êÆÔnû!
  • 23. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ u<êÆ[†êÆÔn £k)4åJ†ÚíÄêÆÔnAy´‡unØ'êÆï Äquot; Q{su<êÆFk±¦'Æ)ÌN'˜I“cêÆ[ï ÄêÆÔnquot; QsS§“cÆ)éù˜+„quot;))quot;GdŬ§·Ž ‰˜’Dquot; ±j êÆÔnû!
  • 24. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ ²;Ôn†êÆ ²YÔn¹åÆ!9åÆÚÚOåÆ!b^Æ!IÆ1 ¡quot; §‚^ DÚêÆ'ØÓ©|§éù©|'MáÚuÐå íĊ^quot; e¡‰˜{ãquot; ±j êÆÔnû!
  • 25. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Úî(Newton)åƆ~‡©§| ÚîI½ÆF = maŒ!Šµ d2 m r = F. dt 2 ù´˜‡0~‡©§|§%dЩ ˜ÚЩ„ÝŒ AџX?¿ž' ˜Ú„Ýquot; ±j êÆÔnû!
  • 26. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ kÚå Úî'%kÚå½ÆŒ!Šµ d2 Mm GMm m r = −G 3 r = ( ). dt 2 |r | |r | ´UþÚÄþ 1 ˙ 2 GMm E= mr − 2 |r | ˙ L = r × mr . Åðquot;ddŒíÑmÊV(Kepler)n½Æquot; ±j êÆÔnû!
  • 27. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ .‚KFåƆC©{ ½Â.‚KF(Lagrange)þ ˙ 1 ˙ GMm L(r (t), r (t)) = mr 2 + 2 |r | 阴»r : [t , t ] → R , ½Â.‚KFÈ©µ 0 1 3 t1 ˙ L(r (t), r (t))dt t0 ±j êÆÔnû!
  • 28. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ .‚KFåƆC©{ é.‚KFÈ©'g©&ÑEuler-Lagrange§µ d ∂L ∂L − = 0. ˙ dt ∂ xi ∂xi ù1duÚî'%kÚ吧quot; g©{P¦^u‡©AÛ¥µXÿG‚!xÚN ì!MorsenØ1quot; ±j êÆÔnû!
  • 29. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ M—îåƆquot;AÛ l.‚KFþŒ±½Âw—î(Hamilton)þµ H := pi qi − L, i ∂L where qi = xi , pi = ∂qi , i = 1, 2, 3. åÆþvˆ¼êf (p, q)§§'6ЧŒ±!µ d f (p, q) = {H, f (p, q)}. dt ±j êÆÔnû!
  • 30. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ M—îåƆquot;AÛ d?{·, ·}Xe½Â'Ñt(Poisson))Òµ ∂f ∂g ∂f ∂g {f , g} = ( − ). ∂qi ∂pi ∂pi ∂qi i w—îåÆ-u ‡©AÛÆ¥4AÛÚÑtAÛ'u Ðquot; Ï~iùAÛ¥§iùÝþ˜­0é¡Üþ§ 4@¨½ Ñt@¨­0‡¡Üþquot; ±j êÆÔnû!
  • 31. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ 9åÆÚÚOåÆ ·é„vkÆvõ£‡È©'žÿÆ9åÆ'aúPÁc 5quot;ƒ8éõ<kaq'²{quot; ÚOåÆ|^VÇÚO'gŽd‡B6Äí÷By–§ù rc VÇØÚÚOÆ'uÐquot; ÚOåƏþfåÆ'uЋe gŽþ'Ä:quot; ±j êÆÔnû!
  • 32. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ >^Ɔõ£‡È© b^Æ´õ£‡È©A^'IŸ‰~quot; ŒêÆ[Gaussë†v§'uЧQb^Æk˜‡Ônþ 'ü ±¦·¶quot; b^Æ'uÐv§¥¢¨åX9…Š^§¢´ò§í IŸ 'ºX'%´êÆ'Äquot; ðŽd‰(Maxwell)±¦'êÆõåò˜¢¨y–o@ ˜êƐ§quot; ±j êÆÔnû!
  • 33. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ ðŽd‰§ ðŽd‰ÄuêÆþ{'Ä& '§Ð†ÔnÆ[& '˜½ÆØΧ 5y²´ÔnÆ[ᆠquot; ðŽd‰l¦'§‰Ñ b^Å'ýóÚIb^Å'ß Ž§ 5Ñ& ¢¨y¢quot; e¡o‡§yQ&¡ðŽd‰§µ · E = 4πρ, · H = 0, 1 ∂H 1 ∂H 4π ×E + = 0, ×H − = J. c ∂t c ∂t c ±j êÆÔnû!
  • 34. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ ðŽd‰§†>^Å Qý˜¥§k 1 ∂H 1 ∂H ×E + = 0, ×H − = 0. c ∂t c ∂t %k 1 ∂E 2 1 ∂H 2 = E, = H. c 2 ∂t c 2 ∂t =E ÚH ÷vÅЧ, dd‰Ñb^Å'ýóquot; ±j êÆÔnû!
  • 35. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ ðŽd‰§†dƒéØ ðŽd‰§'ïÄ',˜‡­‡@t´dƒéØquot; {.I(Faraday)’ ŠI'DÂ'HŸ'±'V gquot; ðŽd‰5¿ Xt±´'½'§QØÓ'ëìXeI„ ØÓquot; ù†ðŽÖ(Michelson)'Ͷ¢¨ØÎquot; ±j êÆÔnû!
  • 36. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ ðŽd‰§†dƒéØ âÔ[(Lorentz)ÚOÏdquot;(Einstein) ´QdÄ:þuÐ dƒéا‰Ñ 5'ž˜Bquot; DŒÅdÄ(Minkowski)‰Ñ'êÆAº^ ‚S“ꥂ Sg†'Vgµžmژm¨¤˜‡o‘˜mµ R4 = {(t, x, y, z) : t, x, y, z ∈ R}, ØÓëìXƒm'‹sd‚Sg† (t , x , y , z ) = (t, x, y, z)A ‰Ñ£A˜o0¤§¦& −c 2 dt 2 +dx 2 +dy 2 +dz 2 = −c 2 (dt )2 +(dx )2 +(dy )2 +(dz )2 . ±j êÆÔnû!
  • 37. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ ðŽd‰§†5‰|Ø ðŽd‰Qí¦'§ž§^ b^³'Vgquot; ÔnÆ[¦5±ù´˜‡êÆóä§vkÔn¿Âquot;  5'uÐy²§b^³´Ä)'Ônþ§Ø Q¢¨ þk¤¢Born-Aharonov¨A§QnØþ†&—S‰| Ø'Ñyquot; ±j êÆÔnû!
  • 38. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ C“Ôn†êÆ ·ùp`'g“Ôn'´PƒéØ!þfåÆÚS‰| Øquot; §‚^ þ˜­VkŒuÐ'xõêÆ©|µ‡©AÛ!ÿ ÀÆ!v«Ø1quot; ±j êÆÔnû!
  • 39. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ 2ƒéرc‡©AÛ £pd¤dGGÿþ'¯KÑu§ïÄn‘˜m¥' Gauss ­¡nØquot; Q¦'Ä:þ§Riemann£iù¤JÑ ‡©AÛ'nØÄ :quot; éiùAÛ'ïÄ¥Ñy'Üþ©ÛQåÆïÄ¥kPA ^quot; ùž®Ñy ChristoffelÎÒ1quot; ±j êÆÔnû!
  • 40. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ 2ƒé؆‡©AÛ iùAÛ'•ŒA^´Einstein£OÏdquot;¤Má'Pƒ éØquot; PƒéØÑuX´^‘­LorentzÝþ'6G5£ãž ˜§Einstein§òAÛþ(Ricci­Ç¤†Ônþ£Uþ¨Ä þÜþ¤éXå5quot; êÆ[FËA(Hilbert)^g©{íÑ ý˜¥ 'Einstein§§¢¦gC`vk=‡êÆ[Œ±“ OEinsteinquot; ±j êÆÔnû!
  • 41. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ 2ƒéØ¢¨yâ PƒéØ'k±eýóµY@Y#'cÄ!I‚'­! çÉ'Q!ÚåÅ11quot; Y@Y#'cÄQPƒéØJѱcÒB© quot; PƒéØJÑØȧu) ˜gF quot;˜‡Bÿ¢|Bÿ I‚QNg'­quot; ¨˜‡Æ)¯¦µXtvk& y¢§¦¬xo`quot;OÏd quot;£‰µ/@o§·ÐŠO'þPa ¢Ãquot;ÃØX Û§ù‡nØ´ ('quot;0 ±j êÆÔnû!
  • 42. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ 2ƒéØ¢¨yâ çɏkéõBÿyâquot;k'´HawkingÚPenrose^ ‡©ÿÀÆØyçÉ'QSquot; PƒéØ'˜‡­‡íØ´Ä'‰»Fµ‰»´Aä ½Â 'quot;ùdwÇ(Hubble)'Bÿ¤|±quot; †dƒ9'k‰»'Œ¿åFquot;ù‡F'ýóƒ˜ ´‰»¥QµË§ù®&Bÿ quot; ÚåÅ'Bÿ´¨V˜‡­‡'‘8quot; ±j êÆÔnû!
  • 43. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ 2ƒé؆y“‡©AÛ PƒéØQêÆþ'­Œ¿Â´4Œ'rc ‡©AÛ' uÐquot; CartanÚWeylс}ÁòEinstein'Úån؆Maxwell' b^nØژå5§d¦‚¦^ ‡©AÛ¥'éän Øquot; QCartan'󊥧©‡©GªÚÌm1AÛé–uÐå5 §ù‡©Aۆ“êÿÀ'@܋e Ä:quot; ±j êÆÔnû!
  • 44. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Žk)†y“‡©AÛ Žk)¤uÐ'a'nØ´˜‡Øe'IŸºXquot; k)u CartanQ‡©AÛ¥¦^©‡©Gª'DÚquot; ¦uÐ'^‡©Gª“v«Sa!^‡©Gª'‡Ý&  ?«Sa(Chern-SimonsnØ!Bott-ChernV­‡Ý¤1Ñ ´4'gŽquot; Qܕ²k)'§w¥k['H quot; ±j êÆÔnû!
  • 45. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Žk)†y“‡©AÛ k)'óŠPK ‡©AÛ!“êAÛ!“êêØ! “êÿÀ1õ‡+quot; ¦'óŠ&µdµ/ÙKr9¤kêÆ+quot;0 Ù¥c­‡'´Atiyah!Singer1<uÐ'snØquot;  ¡¬! ¦‚QÔn¥'A^quot; ±j êÆÔnû!
  • 46. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Einstein †£¤Ðk) †k)ØÓ †Cartanƒaq§£¤Ðk)k)š~97 ÔnÆquot; ¦¼&Fieldsø'ü‘óŠÑ†Einsteink9µ˜‘´P ƒéØ¥' Ÿþߎ§˜‘´9uKahler-EinsteinÝþ ¨ 'Calabiߎquot; XtEinsteiné¦!{¬´Ÿo$'|µ§U¢‰·‚ 'Ž–åuž quot; ±j êÆÔnû!
  • 47. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ þfn؆VÇØ þ˜­Vʛc“±c†PƒéØ|{'´þfåÆquot; †EinsteinA¢˜<ïá PƒéØ'nØe¨Ø Ó§þfåÆ´QxõÔnÆ['¡ÓãåeuÐå5'§ Ùv§¥kxõ¹¢ÚØquot; ~X§QþfåÆ¥éԟ6Äæ^ aq9åÆ¥'VÇ Aºquot; ,Einstein)<éIb¨A'Aº¦¦¤þfnØ'M ©<ƒ˜§¦éBrown6ĉv­‡ïħ¦éù«Aº ±~¦Ýquot; ±j êÆÔnû!
  • 48. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Einstein †þfnØ D`¦éÀ`µ/J#‚ý'ƒ8þP‚•f¯ íº0À£¹#µ/·‚ØUþPTxo‰œ0 Einstein¨céþfåÆ'˜Ÿ¦¤ yQþf8EÆ' ÑuX§Qù‡+gc5k˜¢¨§X¢ï•ë†'˜ ¢¨quot; ùpJ ù´ rx±eêÆÚÔn'ØÓµ¢¨´u ¨ÔnnØ'ªsOquot;·‚¬w vknØ'kI? اk¢¨Ãl‰åquot; ±j êÆÔnû!
  • 49. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ þfåƆ¼©Û bf7X¦fؔ='FkéŒ'(JµdMaxwell'n اbfQ”=v§¥¬uÑb^Ë ›”Uþ§ªá ¦fØþquot; ù«Ë'ȈAT´ë‰'§Œ¢SBÿ'IÌ´lÑ 'quot; þfåÆ¥'˜‡Aºdk¶'Ž™§‰Ñµ ∂ i ψ = Hψ ∂t d?H ˜0‡©Žfquot; ±j êÆÔnû!
  • 50. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ þfåƆ¼©Û ùžŒ±¦^ ‡©§½¼©Û'nصH 'Ì´lÑ '§éAXbf6Ä'U?§U?ƒm'yéAXË' IÌquot; þfåÆrc ¼©Û'uеVon Neumann1<ë† þfåƆ¼©Û'ïÄquot; ±j êÆÔnû!
  • 51. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ þfåƆ+Ø þfåÆ¥g”†Äþ'ïÄïá †êÆ¥+ØÚv« ؃m'éXquot; êÆ[Weyl, Van Der WaerdenÑ!v+؆þfåƐ¡ 'Öquot; êÆ[Harish-Chandra¦5´ÆÔn'§dué+ØÚv« ØaD§=¤têÆ'quot; ±j êÆÔnû!
  • 52. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Dirac § ldƒéØ'ŸþUþ9XŒ±ÑKlein-Gordan§quot; ù´˜‡0¡‡©§quot; duSchrodinger§¥éžm'괘0'§Dirac£A ¨ .Ž¤Ä ¤¢Klein-Gordan§'”²Š”§=k¶ 'Dirac§quot; ù‡§'ý󃘴 bf'Q§du¨ž„vkBÿ bf§DiracY éõ'‹§§9X5gHeisenbergquot; ±j êÆÔnû!
  • 53. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Dirac §†InØ Dirac'Ž{QêÆþ´Ñ¢¿'§QsnØ¥å9 …Š^quot;AityahÚSingeruÐ'snØ'I˜ÚÒ´‡Q ˜„'6Gþ¨iDiracŽfquot; s½nåuRiemann-RochúªÚGauss-Bonnetúª§ QaÚ'bnØ'Ä:þ§Hirzebruchy² p‘ 'Riemann-RochúªÚÎÒúª£Ç©dk)Qù¡ kóŠ¤quot; Hirzebruch'óŠÚu GrothendieckQù¡'󊧁 ª— AityahÚSingeruÐ'snاÙI˜ÚÒ´‡ Q˜„'6Gþ¨iDiracŽfquot; ±j êÆÔnû!
  • 54. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Feynman È© l²YåÆ þfåÆkü«YµlHamiltonåÆÑu§ ^ uþfz'{Œ±& Schrodinger§¶ ¨ lLagrangeåÆÑu§Œ±—FeynmanÈ©quot; Feynman'{åuDiracÖ¥˜‡¢'remark§ÙÄ) 閴Ä´»˜mþ'È©quot; ùaÈ©êÆþ˜„vkÂ(,kWienerÿÝ'n ؤ§¢ÔnÆ[uÐј{§Œ±‰ÑkÔn¿Â' ýóquot; ±j êÆÔnû!
  • 55. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ Feynman È© È©QÔn¥&PA^§ÔnÆ[^§Œ±& Feynman êÆþ¿ŽØ '@t§¤±&êÆ[@´ÔnÆ[' Û{¥quot; êÆ[¤‰'22´^êƐ{y²ÔnÆ['˜ߎ§ ØU AÔnÆ[ˆ ùߎ'g´quot; ±j êÆÔnû!
  • 56. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ y“nØÔnÚêÆ ·¤`'y“nØÔn)±Yang-MillsS‰|؏Ä:' þf|Ø!±Pƒé؏Ä:'þfÚånØڱژù üöª48s'‡unØquot; §‚'¡ÓAX´6^ quot;5quot;õ'y“êƵ‡©AÛ! “êAÛ!ÿÀÆ!v«Ø11quot; §‚¥xõïďquot;5quot;õ'vyêÆÔn§ Ø&nA nØÔnquot; ±j êÆÔnû!
  • 57. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ y“nØÔnÚêÆ é­‡'´§duêÆÔnªÆ‰'¦^êƧ‚'ïÄr c êÆ)'uÐquot; ~X§éS‰|Ø'ïÄ— Donaldsonn Ø!Seiberg-WittennØ'Ñy§§‚Jø DÚ'‡©ÿ À¤ØUJø'5'{quot; ­‘þfÚå'ïÄ— “êAÛ¥Riemann¡'˜m 'Wittenߎ'ÑyÚKontsevich 'y²quot; ±j êÆÔnû!
  • 58. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ ‡unØ ‡unØq¢êÆ'ژåX錊^quot; §r¤ vertex operator algebra, Gromov-Witten theory and mirror symmetry11'#)quot; du£¤Ðk)y²Calabiߎ Ñy'Calabi-Yau6GQ ‡unØïÄ¥åØ7Š^quot; ‡unØ¥éóS'gŽ— éõ-<¯Û'ߎ§k ®²&êÆ[y² quot; ±j êÆÔnû!
  • 59. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ dužm9XØU‰['H quot; Œ±ëoœ'Ö5‡unØüÂ6Ú·'© Ùµ”Derivatives in Mathematics and Physics” quot; Brian Green'Ö5‰»'Œu6£The Elegant Universe). ±j êÆÔnû!
  • 60. VØ êÆ[†êÆÔn ²;Ôn†êÆ C“Ôn†êÆ y“Ôn†êÆ (Š ÛÏgS§)g˜À¶ ” ÛÏgS§)Ø)«¶ ÛÏgS§)gäv¶ ÛÏgS§)ÃÄ~¶ ÛÏgS§U)%{quot;” —58yŒ“{¥²6 ±j êÆÔnû!