Big Data - Where from Where to

  • 302 views
Uploaded on

 

More in: Technology , Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
302
On Slideshare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
8
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Copyright © 2013 Hanmin JungHanmin JungHead of the Dept. of Computer Intelligence ResearchKISTIBig Data:Where from? Where to?
  • 2. Copyright © 2013 Hanmin JungVery Recent Activities on Big Data(National Science and Technology Commission) Member of Big DataTechnical Impact Assessment Committee(Korea Communications Commission) Sub-committee Chair of Big DataForum(Ministry of Knowledge Economy) Technical Secretary of Big DataProgram Planning Committee(Ministry of Educational Science and Technology) Member of Big DataInformation Strategic Program Expert Committee(National IT Industry Promotion Agency) Lecturer of Big Data ExpertiseReinforcement ProgramLet Me Introduce Myself :-)2
  • 3. Copyright © 2013 Hanmin Jung3QuestionsWhere are Big Data from?Who gathers and consumes the data?Is the data used for?
  • 4. Copyright © 2013 Hanmin JungSmart Workhttp://files.thinkpool.com/files/bbs/2010/07/21/%EC%8A%A4%EB%A7%88%ED%8A%B8%EC%9B%8C%ED%81%AC1.jpg4
  • 5. Copyright © 2013 Hanmin JungCloud ComputingService Platform Accelerated by Mobile Deviceshttp://simpleroot.com/wp-content/uploads/2012/10/Remote-Cloud-Computing.jpg5
  • 6. Copyright © 2013 Hanmin Jung6Cloud Computing – 建建建建て前前前前 & 本音本音本音本音Introducing iCloud
  • 7. Copyright © 2013 Hanmin Jung7Cloud ComputingGoogle Data Centerhttp://www.youtube.com/watch?v=avP5d16wEp0
  • 8. Copyright © 2013 Hanmin Jung8Data SourcesWeb -> Social -> Thing“The next Google or Facebook may well bean Internet of Things company.”by R. MacManus (ReadWriteWeb)
  • 9. Copyright © 2013 Hanmin Jung9Social Datahttp://bynoy.files.wordpress.com/2011/08/united-noy-weblife-60-seconds.jpg
  • 10. Copyright © 2013 Hanmin Jung10Machine DataT. Baer, “What is Big Data? The Reality for Analytics”, OVUM, 2011.Call data recordsCall data recordsSensory dataSensory dataWeb log filesWeb log filesFinancial Instrument TradeFinancial Instrument Trade
  • 11. Copyright © 2013 Hanmin Jung11Internet of ThingsK. Escherich, “Internet of Things”, 2011.
  • 12. Copyright © 2013 Hanmin Jung12Big Data in the Worldhttp://www.ektron.com/billcavablog/Big-Data-Big-Content-Big-Challenges/
  • 13. Copyright © 2013 Hanmin Jung13Infographics for Big Datahttp://thumbnails.visually.netdna-cdn.com/big-data_50291c3b16257.jpg
  • 14. Copyright © 2013 Hanmin Jung14Google.com Traffichttp://siteanalytics.compete.com/naver.com/
  • 15. Copyright © 2013 Hanmin Jung15Naver.com Traffichttp://siteanalytics.compete.com/naver.com/
  • 16. Copyright © 2013 Hanmin JungForeseeable FutureGoogle Project Glass16
  • 17. Copyright © 2013 Hanmin Jung17Hype Cycle
  • 18. Copyright © 2013 Hanmin Jung18Hype Cycle – 2010Emerging Technologies Hype Cycle 2010
  • 19. Copyright © 2013 Hanmin Jung19Hype Cycle – 2011Emerging Technologies Hype Cycle 2011
  • 20. Copyright © 2013 Hanmin Jung20Hype Cycle – 2012Emerging Technologies Hype Cycle 2012
  • 21. Copyright © 2013 Hanmin Jung21Google Insightshttp://www.google.com/insights/search/
  • 22. Copyright © 2013 Hanmin Jung22Bottleneck in Data Ecosystemhttp://quizzicaleyebrow.files.wordpress.com/2011/03/pict0044.jpg
  • 23. Copyright © 2013 Hanmin Jung23Big Data Ecosystemhttp://imexresearch.com/Newsletter_HTML/bd2.png
  • 24. Copyright © 2013 Hanmin JungBig Data EcosystemNew Approaches Required forPersistenceIndexingCaching and query optimizationProcessingStructureQuery languageCompression24T. Baer, “What is Big Data? The Reality for Analytics”, OVUM, 2011.
  • 25. Copyright © 2013 Hanmin Jung25Insights for Searchhttp://www.google.com/insights/search/
  • 26. Copyright © 2013 Hanmin JungMobile PhoneWorldwide Market ShareWorldwide mobile device sales to end users in 2008 ~ 2012Gartner, IDC Worldwide Mobile Phone Tracker4.0, 14.14.3, 17.19.9, 47.8Apple7.5, 23.011.0, 31.68.1, 28.45.4, 21.1LG3.3, 15.8HuaweiCompany4Q2012(%, M. Units)3Q2011(%, M. Units)3Q2010(%, M. Units)3Q2009(%, M. Units)3Q2008(%, M. Units)Nokia 17.9, 86.3 27.1, 106.6 31.6,110.4 37.8, 108.5 38.6, 117.9Samsung 23.0, 111.2 22.3, 87.8 20.5, 71.4 21.0, 60.2 17.0, 52.0ZTE 3.6, 17.6 4.9, 19.1 3.5, 12.1Sony Ericsson 4.9, 14.1 8.4, 25.7Motorola 4.7, 13.6 8.3, 25.4Others 42.3, 203.8 36.1, 142 32.2, 112.5 20.6, 59.1 20.1, 61.5Total 482.5 393.7 348.9 287.1 305.426
  • 27. Copyright © 2013 Hanmin Jung27CDC Influenza Summaryhttp://www.cdc.gov/flu/weekly/usmap.htm
  • 28. Copyright © 2013 Hanmin Jung28Google Flu TrendsJ. Ginsberg, “Detecting influenza epidemics using search engine query data”
  • 29. Copyright © 2013 Hanmin Jung29Voice Search Evaluationhttp://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//pubs/archive/40491.pdf
  • 30. Copyright © 2013 Hanmin Jung30Causes of Deathhttp://image.guardian.co.uk/sys-files/Guardian/documents/2011/10/28/Factfile_deaths_2_2011.pdf
  • 31. Copyright © 2013 Hanmin Jung31IBM Watsonhttp://powet.tv/powetblog/wp-content/uploads/2011/02/watson_the_computer_beats_ken_jennings_and_brad_rutter_at_jeopardy_full.jpg
  • 32. Copyright © 2013 Hanmin Jung32SearchClusteringExtractingDecisionSupportForecastingScenarioPlanningAdvisingModified from D. Bousfield & P. Fooladi, “STM Information: 2009 Final Market Size and Share Report”, 2010.Value PyramidInSciTe Advanced (2011)InSciTe Adaptive (2012)OntoFrame (2005~2009)InSciTe Advanced (2010)
  • 33. Copyright © 2013 Hanmin Jung33Big Data & Decision Makinghttp://lithosphere.lithium.com/t5/Lithium-s-View/Big-Data-Analytics-Reducing-Zettabytes-of-Data-Down-to-a-Few/ba-p/36378Reducing Zettabytes of Data Down to a Few BitsData help us make better decisions.The primary function of analytics is to support decision making.The challenge of big data analytics isto reduce a lot of data down to a few bits.
  • 34. Copyright © 2013 Hanmin JungStrategic ForesightR. Rohrbeck, H. Arnold, and J. Heuer, “Strategic Foresight in Multimedia Enterprises”, 2007.34
  • 35. Copyright © 2013 Hanmin Jung35Quantitative Analytics
  • 36. Copyright © 2013 Hanmin Jung36TI ProjectsFUSEFunded by IARPA (early 2011 ~ early 2016)Kick off meeting in summer, 2011Foresight and Understanding from Scientific Exposition ProgramSeeks to develop automated methods that aid in the systematic,continuous, and comprehensive assessment of technical emergence usinginformation found in the published scientific, technical, and patentliteraturePartnersBAE Systems, Brandeis Univ., New York Univ., 1790 Analytics, …
  • 37. Copyright © 2013 Hanmin Jung37TI ProjectsFUSE
  • 38. Copyright © 2013 Hanmin JungTI ProjectsCUBISTFunded by the European Commission (late 2010 ~ late 2013)1st CUBIST workshop in July, 2011Combining and Uniting Business Intelligence with Semantic TechnologiesProgramAims to develop new ways to interrogate not only the massive volume dataon the Internet, but also analyze the different formats it exist in – such asblogs, wikis, and videoPartnersSAP, Ontotext, Sheffield Hallam Univ., …38
  • 39. Copyright © 2013 Hanmin Jung39TI ProjectsCUBIST
  • 40. Copyright © 2013 Hanmin JungTI ProjectsCommon TechnologiesSemantic technologiesOntology, reasoning, URI schemeAnalytics modelBYOM (e.g. technology opportunity discovery model, technologyevolution model, formal concept analysis model)Information extraction (InSciTe, FUSE)Named entities and events/relations in textual documents40
  • 41. Copyright © 2013 Hanmin JungOur Vision & Architecture41
  • 42. Copyright © 2013 Hanmin JungInSciTe Advanced (2011)42
  • 43. Copyright © 2013 Hanmin Jung43InSciTe Adaptive (2012)
  • 44. Copyright © 2013 Hanmin JungData Fact SheetInSciTe Adaptive (2012)Articles: 22.6 millions (9.8 millions for papers, 7.6 millions for patents, 5.3millions for Web data)All technical areas (2001~2011)Named entities: 1.9 millionsAuthority dictionary: 1.5 millions entriesLOD data: 290 GB (are being connected)44
  • 45. Copyright © 2013 Hanmin Jung45Supporting Decision Makinghttp://4.bp.blogspot.com/-Pf1hkccZZh4/TWDJahBpL2I/AAAAAAAAASU/JHLpXi8d9AQ/s640/meetings.jpg
  • 46. Copyright © 2013 Hanmin Jung46Data Scientisthttp://philanthropy.com/blogs/innovation/matching-data-scientists-and-nonprofits/778
  • 47. Copyright © 2013 Hanmin JungEvidence-based Decision MakingAdvantagesEnsures that policies are responding to the real needs of the communityHighlight the urgency of an issue or problem which requires immediateattentionEnables information sharing amongst other members of the public sectorReduces government expenditure which may otherwise be directed intoineffective policies or programsProduces an acceptable return on the financial investment that is allocatedtoward public programsEnsures that decisions are made in a way that is consistent with ourdemocratic and political processes which are characterized bytransparency and accountabilityhttp://www.abs.gov.au/ausstats/abs@.nsf/lookup/1500.0chapter3201047
  • 48. Copyright © 2013 Hanmin Jung48InSciTe Projecthttp://semantics.kisti.re.kr
  • 49. Copyright © 2013 Hanmin Jung49Thank youjhm@kisti.re.kr“A lot of times, people don’t know what they want until you show it to them.”by Steve Jobs“Many people won’t be convinced until they’ve seen it for themselves.”by Jakob Nielsen