Semiconductores
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
414
On Slideshare
414
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
15
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. SEMICONDUCTORES Jhessel Guzmán Vargas Física Electrónica
  • 2. Definición • Los semiconductores son elementos que tienen una conductividad eléctrica inferior a la de un conductor metálico pero superior a la de un buen aislante. El semiconductor más utilizado es el silicio, que es el elemento más abundante en la naturaleza, después del oxígeno. Otros semiconductores son el germanio y el selenio. http://www.etitudela.com/Electrotecnia/downloads/introduccion.pdf
  • 3. MECANISMO DE CONDUCCIÓN DE UN SEMICONDUCTOR • Cuando a un elemento semiconductor le aplicamos una diferencia de potencial o corriente eléctrica, se producen dos flujos contrapuestos: uno producido por el movimiento de electrones libres que saltan a la “banda de conducción” y otro por el movimiento de los huecos que quedan en la “banda de valencia” cuando los electrones saltan a la banda de conducción. Cuando aplicamos una diferencia de potencial a un elemento semiconductor, se establece una “corriente de electrones” en un sentido y otra “corriente de huecos” en sentido opuesto. http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_9.htm
  • 4. Semiconductores Intrínsecos • Se dice que un semiconductor es “intrínseco” cuando se encuentra en estado puro, o sea, que no contiene ninguna impureza, ni átomos de otro tipo dentro de su estructura. En ese caso, la cantidad de huecos que dejan los electrones en la banda de valencia al atravesar la banda prohibida será igual a la cantidad de electrones libres que se encuentran presentes en la banda de conducción. http://www.asifunciona.com/fisica/ke_semiconductor/ke_semiconductor_4 .htm
  • 5. • Estructura cristalina de un semiconductor intrínseco, compuesta solamente por átomos de silicio (Si) que forman una celosía. Como se puede observar en la ilustración, los átomos de silicio (que sólo poseen cuatro electrones en la última órbita o banda de valencia), se unen formando enlaces covalente para completar ocho electrones y crear así un cuerpo sólido semiconductor. En esas condiciones el cristal de silicio se comportará igual que si fuera un cuerpo aislante. Semiconductores Intrínsecos http://www.asifunciona.com/fisica/ke_semiconductor/ ke_semiconductor_4.htm
  • 6. Semiconductores Intrínsecos • Si un electrón de valencia se convierte en electrón de conducción deja una posición vacante, y si aplicamos un campo eléctrico al semiconductor, este “hueco” puede ser ocupado por otro electrón de valencia, que deja a su vez otro hueco. Este efecto es el de una carga +e moviéndose en dirección del campo eléctrico. A este proceso le llamamos „generación térmica de pares electrón-hueco‟. Este fenómeno de la conducción asociada a la formación de pares en el semiconductor se denomina conducción intrínseca. Se cumple que p = n = ni --> Donde p y n son las concentraciones de huecos y electrones respectivamente, y ni es la concentración de portadores intrínsecos.http://fisicauva.galeon.com/aficiones1925812.html
  • 7. SEMICONDUCTORES DOPADOS • La adición de un pequeño porcentaje de átomos extraños en la red cristalina regular de silicio o germanio, produce unos cambios espectaculares en sus propiedades eléctricas, dando lugar a los semiconductores de tipo n y tipo p. Impurezas pentavalentes Los átomos de impurezas con 5 electrones de valencia, producen semiconductores de tipo n, por la contribución de electrones extras. Impurezas trivalentes Los átomos de impurezas con 3 electrones de valencia, producen semiconductores de tipo p, por la producción de un "hueco" o deficiencia de electrón. http://hyperphysics.phy-astr.gsu.edu/hbasees/solids/dope.html
  • 8. Semiconductores Tipos P y N
  • 9. Semiconductor Tipo N • La adición de impurezas pentavalentes como el antimonio, arsénico, o fósforo, aportan electrones libres, aumentando considerablemente la conductividad del semiconductor intrínseco. El fósforo se puede añadir por difusión del gas fosfina (PH3). http://hyperphysics.phy- astr.gsu.edu/hbasees/solids/dope.htm l#c3
  • 10. Semiconductor Tipo P • La adición de impurezas trivalentes tales como boro, aluminio, o galio a un semiconductor intrínseco, crean unas deficiencias de electrones de valencia, llamadas "huecos". Lo normal es usar el gas diborano B2H6, para difundir el boro en el material de silicio. http://hyperphysics.phy- astr.gsu.edu/hbasees/solids/dope. html#c3
  • 11. Bandas en Semiconductores Dopados • La aplicación de la teoría de bandas a los semiconductores de tipo n y tipo p muestra que los niveles adicionales se han añadido por las impurezas. En el material de tipo n hay electrones con niveles de energía cerca de la parte superior de la banda prohibida, de modo que pueden ser fácilmente excitados hacia la banda de conducción. En el material de tipo p, los huecos adicionales en la banda prohibida, permiten la excitación de los electrones de la banda de valencia, dejando huecos móviles en la banda de valencia.