Your SlideShare is downloading. ×
Chemistry, The Central Science, 11th edition
          Theodore L. Brown; H. Eugene LeMay, Jr.;
                    and Br...
First Law of Thermodynamics

• You will recall from Chapter 5 that
  energy cannot be created nor
  destroyed.
• Therefore...
Spontaneous Processes
• Spontaneous processes
  are those that can
  proceed without any
  outside intervention.
• The gas...
Spontaneous Processes

            Processes that are
            spontaneous in one
            direction are
           ...
Spontaneous Processes
• Processes that are spontaneous at one
  temperature may be nonspontaneous at other
  temperatures....
Reversible Processes

            In a reversible
            process the system
            changes in such a
           ...
Irreversible Processes




• Irreversible processes cannot be undone by
  exactly reversing the change to the system.
• Sp...
Entropy

• Entropy (S) is a term coined by Rudolph
  Clausius in the 19th century.
• Clausius was convinced of the
  signi...
Entropy

• Entropy can be thought of as a measure
  of the randomness of a system.
• It is related to the various modes of...
Entropy

• Like total energy, E, and enthalpy, H,
  entropy is a state function.
• Therefore,
               S = Sfinal Si...
Entropy

For a process occurring at constant
temperature (an isothermal process), the
change in entropy is equal to the he...
Second Law of Thermodynamics

  The second law of thermodynamics
  states that the entropy of the universe
  increases for...
Second Law of Thermodynamics

In other words:
For reversible processes:
           Suniv = Ssystem + Ssurroundings = 0
For...
Second Law of Thermodynamics

  These last truths mean that as a result
  of all spontaneous processes the
  entropy of th...
Entropy on the Molecular Scale
• Ludwig Boltzmann described the concept of
  entropy on the molecular level.
• Temperature...
Entropy on the Molecular Scale
• Molecules exhibit several types of motion:
  – Translational: Movement of the entire mole...
Entropy on the Molecular Scale
• Boltzmann envisioned the motions of a sample of
  molecules at a particular instant in ti...
Entropy on the Molecular Scale
• Each thermodynamic state has a specific number of
  microstates, W, associated with it.
•...
Entropy on the Molecular Scale

• The change in entropy for a process,
  then, is
      S = k lnWfinal k lnWinitial

     ...
Entropy on the Molecular Scale
• The number of microstates
  and, therefore, the entropy tends to
  increase with increase...
Entropy and Physical States

• Entropy increases with
  the freedom of motion
  of molecules.
• Therefore,
  S(g) > S(l) >...
Solutions

      Generally, when
      a solid is
      dissolved in a
      solvent, entropy
      increases.



        ...
Entropy Changes

• In general, entropy
  increases when
  – Gases are formed from
    liquids and solids;
  – Liquids or s...
Third Law of Thermodynamics

       The entropy of a pure crystalline
       substance at absolute zero is 0.




        ...
Standard Entropies

• These are molar entropy
  values of substances in
  their standard states.
• Standard entropies tend...
Standard Entropies

Larger and more complex molecules have
greater entropies.




                                       C...
Entropy Changes

Entropy changes for a reaction can be
estimated in a manner analogous to that by
which H is estimated:

 ...
Entropy Changes in Surroundings
 • Heat that flows into or out of the
   system changes the entropy of the
   surroundings...
Entropy Change in the Universe

• The universe is composed of the system
  and the surroundings.
• Therefore,
       Suniv...
Entropy Change in the Universe
                        qsystem
• Since Ssurroundings =   T
  and qsystem = Hsystem
  This ...
Gibbs Free Energy

•  T Suniverse is defined as the Gibbs free
  energy, G.
• When Suniverse is positive, G is
  negative....
Gibbs Free Energy
       1. If G is negative, the
          forward reaction is
          spontaneous.
       2. If G is 0...
Standard Free Energy Changes

 Analogous to standard enthalpies of
 formation are standard free energies of
 formation, G ...
Free Energy Changes

At temperatures other than 25°C,

          G° = H      T S

How does G change with temperature?


  ...
Free Energy and Temperature

• There are two parts to the free energy
  equation:
     H — the enthalpy term
  – T S — the...
Free Energy and Temperature




                             Chemical
                          Thermodynamics

          ...
Free Energy and Equilibrium
Under any conditions, standard or
nonstandard, the free energy change
can be found this way:

...
Free Energy and Equilibrium
• At equilibrium, Q = K, and G = 0.
• The equation becomes
              0 = G + RT lnK
• Rear...
Upcoming SlideShare
Loading in...5
×

AP Chemistry Chapter 19 Outline

5,636

Published on

Published in: Technology, Education
0 Comments
10 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
5,636
On Slideshare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
0
Comments
0
Likes
10
Embeds 0
No embeds

No notes for slide

Transcript of "AP Chemistry Chapter 19 Outline"

  1. 1. Chemistry, The Central Science, 11th edition Theodore L. Brown; H. Eugene LeMay, Jr.; and Bruce E. Bursten Chapter 19 Chemical Thermodynamics John D. Bookstaver Chemical St. Charles Community College Thermodynamics Cottleville, MO © 2009, Prentice-Hall, Inc.
  2. 2. First Law of Thermodynamics • You will recall from Chapter 5 that energy cannot be created nor destroyed. • Therefore, the total energy of the universe is a constant. • Energy can, however, be converted from one form to another or transferred from a system to the surroundings or vice versa. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  3. 3. Spontaneous Processes • Spontaneous processes are those that can proceed without any outside intervention. • The gas in vessel B will spontaneously effuse into vessel A, but once the gas is in both vessels, it will not spontaneously return to vessel B. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  4. 4. Spontaneous Processes Processes that are spontaneous in one direction are nonspontaneous in the reverse direction. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  5. 5. Spontaneous Processes • Processes that are spontaneous at one temperature may be nonspontaneous at other temperatures. • Above 0 C it is spontaneous for ice to melt. • Below 0 C the reverse process is spontaneous. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  6. 6. Reversible Processes In a reversible process the system changes in such a way that the system and surroundings can be put back in their original states by exactly reversing the process. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  7. 7. Irreversible Processes • Irreversible processes cannot be undone by exactly reversing the change to the system. • Spontaneous processes are irreversible. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  8. 8. Entropy • Entropy (S) is a term coined by Rudolph Clausius in the 19th century. • Clausius was convinced of the significance of the ratio of heat delivered and the temperature at which it is delivered, q . T Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  9. 9. Entropy • Entropy can be thought of as a measure of the randomness of a system. • It is related to the various modes of motion in molecules. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  10. 10. Entropy • Like total energy, E, and enthalpy, H, entropy is a state function. • Therefore, S = Sfinal Sinitial Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  11. 11. Entropy For a process occurring at constant temperature (an isothermal process), the change in entropy is equal to the heat that would be transferred if the process were reversible divided by the temperature: qrev S= T Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  12. 12. Second Law of Thermodynamics The second law of thermodynamics states that the entropy of the universe increases for spontaneous processes, and the entropy of the universe does not change for reversible processes. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  13. 13. Second Law of Thermodynamics In other words: For reversible processes: Suniv = Ssystem + Ssurroundings = 0 For irreversible processes: Suniv = Ssystem + Ssurroundings > 0 Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  14. 14. Second Law of Thermodynamics These last truths mean that as a result of all spontaneous processes the entropy of the universe increases. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  15. 15. Entropy on the Molecular Scale • Ludwig Boltzmann described the concept of entropy on the molecular level. • Temperature is a measure of the average kinetic energy of the molecules in a sample. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  16. 16. Entropy on the Molecular Scale • Molecules exhibit several types of motion: – Translational: Movement of the entire molecule from one place to another. – Vibrational: Periodic motion of atoms within a molecule. – Rotational: Rotation of the molecule on about an axis or rotation about bonds. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  17. 17. Entropy on the Molecular Scale • Boltzmann envisioned the motions of a sample of molecules at a particular instant in time. – This would be akin to taking a snapshot of all the molecules. • He referred to this sampling as a microstate of the thermodynamic system. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  18. 18. Entropy on the Molecular Scale • Each thermodynamic state has a specific number of microstates, W, associated with it. • Entropy is S = k lnW where k is the Boltzmann constant, 1.38 10 23 J/K. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  19. 19. Entropy on the Molecular Scale • The change in entropy for a process, then, is S = k lnWfinal k lnWinitial lnWfinal S = k ln lnWinitial • Entropy increases with the number of microstates in the system. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  20. 20. Entropy on the Molecular Scale • The number of microstates and, therefore, the entropy tends to increase with increases in – Temperature. – Volume. – The number of independently moving molecules. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  21. 21. Entropy and Physical States • Entropy increases with the freedom of motion of molecules. • Therefore, S(g) > S(l) > S(s) Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  22. 22. Solutions Generally, when a solid is dissolved in a solvent, entropy increases. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  23. 23. Entropy Changes • In general, entropy increases when – Gases are formed from liquids and solids; – Liquids or solutions are formed from solids; – The number of gas molecules increases; – The number of moles increases. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  24. 24. Third Law of Thermodynamics The entropy of a pure crystalline substance at absolute zero is 0. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  25. 25. Standard Entropies • These are molar entropy values of substances in their standard states. • Standard entropies tend to increase with increasing molar mass. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  26. 26. Standard Entropies Larger and more complex molecules have greater entropies. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  27. 27. Entropy Changes Entropy changes for a reaction can be estimated in a manner analogous to that by which H is estimated: S = n S (products) — m S (reactants) where n and m are the coefficients in the balanced chemical equation. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  28. 28. Entropy Changes in Surroundings • Heat that flows into or out of the system changes the entropy of the surroundings. • For an isothermal process: qsys Ssurr = T • At constant pressure, qsys is simply H for the system. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  29. 29. Entropy Change in the Universe • The universe is composed of the system and the surroundings. • Therefore, Suniverse = Ssystem + Ssurroundings • For spontaneous processes Suniverse > 0 Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  30. 30. Entropy Change in the Universe qsystem • Since Ssurroundings = T and qsystem = Hsystem This becomes: Hsystem Suniverse = Ssystem + T Multiplying both sides by T, we get T Suniverse = Hsystem T Ssystem Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  31. 31. Gibbs Free Energy • T Suniverse is defined as the Gibbs free energy, G. • When Suniverse is positive, G is negative. • Therefore, when G is negative, a process is spontaneous. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  32. 32. Gibbs Free Energy 1. If G is negative, the forward reaction is spontaneous. 2. If G is 0, the system is at equilibrium. 3. If G is positive, the reaction is spontaneous in the reverse direction. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  33. 33. Standard Free Energy Changes Analogous to standard enthalpies of formation are standard free energies of formation, G f . G = n G f (products) m G f(reactants) where n and m are the stoichiometric coefficients. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  34. 34. Free Energy Changes At temperatures other than 25°C, G° = H T S How does G change with temperature? Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  35. 35. Free Energy and Temperature • There are two parts to the free energy equation: H — the enthalpy term – T S — the entropy term • The temperature dependence of free energy, then comes from the entropy term. Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  36. 36. Free Energy and Temperature Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  37. 37. Free Energy and Equilibrium Under any conditions, standard or nonstandard, the free energy change can be found this way: G = G + RT lnQ (Under standard conditions, all concentrations are 1 M, so Q = 1 and lnQ = 0; the last term drops out.) Chemical Thermodynamics © 2009, Prentice-Hall, Inc.
  38. 38. Free Energy and Equilibrium • At equilibrium, Q = K, and G = 0. • The equation becomes 0 = G + RT lnK • Rearranging, this becomes G = RT lnK or, - G K = e RT Chemical Thermodynamics © 2009, Prentice-Hall, Inc.

×