Composite Inelastic Dark Matter

490 views

Published on

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
490
On SlideShare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Composite Inelastic Dark Matter

  1. 1. Disentangling Dark Matter Dynamics Jay Wacker SLAC Boston University Theory Seminar September 29, 2009 with Philip Schuster, Daniele Alves, Siavosh Behbahbani arXiv: 0903.3945 with Mariangela Lisanti arXiv: 0910.xxxx, 0910.xxxx
  2. 2. Status of Dark Matter Not your grandfather’s DM Candidate DAMA PAMELA ATIC FERMI WMAP Haze INTEGRAL Hints at non-trivial interactions
  3. 3. Plan of Talk DAMA & Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Direct Detection Directional Detection Experiments Collider Signatures
  4. 4. DAMA WIMP wind Annual modulation in WIMP signal winter ⊙ v Φwimp = σv E v E v summer Modulation amplitude ~2.5% for elastic scattering v ≤ vesc + |vE − v⊙ | v ≤ vesc + |vE + v⊙ |
  5. 5. Direct Detection Dark matter scatters off nuclei in detectors Measure recoil energy of nuclei spin-independent (χχ)(¯q) ¯ q χ q χ q DM Coherently acts with entire nucleus σSI ∝ A2 µ2 ∼ A4 Limits always stated in terms of cross section per nucleon
  6. 6. Elastic nuclear scattering A Bestiary of Experiments WIMP CDMS Ge 10% energy Ge, Si Ionization ZEPLIN2 ZEPLIN3 Liquid Xe Target Heat Al2O3, LiF XENON10 100% energy slowest cryogenics Light 1% energy CaWO4, BGO NaI, Xe fastest no surface effects WIMP CRESST DAMA From: Véronique Sanglard (La Thuille 2005)
  7. 7. Direct Detection Experiments optimized to look for elastic scattering recoil spectrum Signal Window Exposure Experiment Element # Events (keV) (kg day) CDMS Ge 10-100 2 170 dRel ∝ e−ER XENON Xe 4.5-45 24 300 dER Rate ZEPLIN 2 Xe 14-56 29 200 ZEPLIN 3 Xe 11-31 7 150 CRESST W 10-100 7 30 Recoil Energy (keV) DAMA 0.82 Ton Years!
  8. 8. Current Limits -5 10 http://dmtools.brown.edu/ Cross-section [pb] (normalised to nucleon) DAMA Gaitskell,Mandic,Filippini N 2 P LI ZE T SS RE -6 10 C ZE PL IN3 -5 XE 10 -7 S http://dmtools.brown.edu/ DM [pb] (normalised to nucleon) 10 NO C Gaitskell,Mandic,Filippini N -6 10 -8 090913122401 spin-independent 10 1 2 3 10 10 10 WIMP Mass [GeV/c2] -7 10
  9. 9. DAMA Spectrum for DAMA modulation amplitude Scattering off Na or I - w or w/o quenching Chang, Pierce, Weiner (2008) Suppressed at low recoil energy 0.07 0.06 2 GeV 0.04 0.04 Sm countskgday 0.05 0.04 7 GeV Rate (cpd/kg/keVee) 0.03 0.03 0.03 Rate cpdkgkeVee 0.02 77 GeV 0.01 12 GeV 0.02 0.02 2 3 4 5 6 keVee 0.01 0.01 FIG. 2: We show the modulation spectra for the best fit 39.0 point where scattering off iodine dominates, mχ = 77 GeV (dot-dashed orange), and three points where scattering off of sodium dominates. The best fit point off sodium is mχ = 12 39.5 0.00 0.00 GeV (solid red). We also show mχ = 2 GeV (dashed green) and mχ = 7 GeV (dotted blue). The points with error bars 0 0 2 2 4 keVee 4 Recoil Energy 6 6 8 8 40.0 are the published DAMA/LIBRA data. Recoil Energy (keVee) logΣn cm2 logΣn cm2 40.5 higher mass, say 20 GeV, this approach does not succeed. As 41.0 mass moves above 12 GeV, a AMATotal the D contribution coming arXiv:0804.2741, Bernabei et. al. from iodine scattering begins to move into the low end of the41.5 observed energy region, spoiling the fit. Also plotted in Fig. 2 are spectra for WIMP SSi CDM masses of 2 and 7 GeV for comparison. 42.0 XENON The 68%, 90%, and 99% CL (∆χ 2.3, 4.61, 9.21) 2 contours consistent with our nine bin DAMA/LIBRA χ 2 function are shown in Fig. 1. Both regions shrink dra- matically compared to the Χ GeV χ2 . In the left panel, 0 20 40 60 80 100 120 m two bin the ∆χ2 is with respect to the global best fit point at 77
  10. 10. Inelastic Dark Matter Dark matter has two nearly Threshold velocity necessary degenerate states to scatter with energy ER δm ∼ (100 keV) χ2 q 1 mN ER vmin = √ + δm 2mN ER µ χ1 q Lighter nuclei, higher threshold Tucker-Smith and Weiner, hep-ph/0101138.
  11. 11. Inelastic Dark Matter Threshold behavior µv 2 ∼ 100 keV Rate Recoil Energy (keV) 3 Consequences (1) Scatters off of heavier nuclei -- CDMS ineffective (2) Large recoil energy -- ZEPLIN3 XENON didn’t look (3) Large modulation fraction -- absolute signal is smaller
  12. 12. Standard Halo Model Scattering rate depends on halo profile vesc 3.5 dR dσ ∝ d vf (v)v 3 3 3.0 dER vmin dER v 2 f (v)/10−4 2.5 2 2.0 v0 inelastic scattering sensitive to 1.5 tail of distribution 1 1.0 0.5 vesc 00 0.0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  13. 13. Larger Modulation Fraction Smaller rate One reason for apparent tension 1 2.5% modulation 0.75 Rate 0.5 0.25 50% modulation 0 0.25 0.5 0.75 1 Dec. 2nd June 2nd Time
  14. 14. Inelastic Dark Matter A new number to explain: δm ∼ 10−6 m Sign of dark sector dynamics? First of many splittings New interactions to discover Changes which questions are interesting
  15. 15. Form-Factor Suppression Can suppress low energy scattering Fdm (q 2 ) = c0 + c1 q 2 + c2 q 4 + · · · q 2 mN E R χ Fdm (q 2 ) dRel N ∝ (ER )n e−ER dER Rate N χ Recoil Energy (keV)
  16. 16. Form-Factor Suppression Can suppress low energy scattering Fdm (q 2 ) = c0 + c1 q 2 + c2 q 4 + · · · q 2 mN E R χ Fdm (q 2 ) dRel N ∝ (ER )n e−ER dER Rate N χ Best case scenarios 5 Recoil Energy (keV) 32 35.5 c0 = c1 = 0 33 36.0 logΣ p cm2 logΣ p cm2 34 36.5 35 Pospelov Ritz (2003) 37.0 Chang, Pierce, and Weiner (2009). 36 Feldstein, Fitzpatrick, and Katz (2009). 37.5 37 m Χ GeV m Χ GeV 0 20 40 60 80 0 20 40 60 80 a) b) IG. 3: Plots of the SD-proton cross section σp vs DM mass mχ without (a) and with q 4 suppression (b). The colored egions show the 68, 90, and 99% CL regions for the best DAMA fit. The 90% exclusions limits are PICASSO (gray
  17. 17. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Direct Detection Directional Detection Experiments Collider Signatures
  18. 18. Composite Inelastic Dark Matter Alves, Behbahani, Schuster, Wacker, 0903.3945. 1 Ldark = − Tr G2 + q iD q + m¯q ¯ q 2 µν New SU(Nc) gauge sector confines at scale Λd 2π Λdark ∼ exp − b0 αdark Two dark quarks qH qL mH Λdark , mL No flavor changing effects
  19. 19. Composite Inelastic Dark Matter Alves, Behbahani, Schuster, Wacker, 0903.3945. 1 Ldark = − Tr G2 + q iD q + m¯q ¯ q 2 µν New SU(Nc) gauge sector confines at scale Λd 2π Λdark ∼ exp − b0 αdark Two dark quarks qH qL mH Λdark , mL No flavor changing effects Meson Baryon Low Energy Stable States ¯ ¯ qL · · · qL Mesons qH · · · qH NH asymmetric NH asymmetric qL · · · qL Baryons Nc − NH asymmetric
  20. 20. Cosmology of CiDM Alves, Behbahani, Schuster, Wacker: 0903.3945 + to appear A primordial cosmological dark quark asymmetry (nH − nH ) = −(nL − nL ) = 0 ¯ ¯ ¯ When T Λd , dark matter is in qH qL bound state Processing into multi-core hadrons can be slow Dominantly in NH = 1 mesons nB O(10−6 ) nM
  21. 21. Splitting of Ground State Mass difference in meson states arises from hyperfine splitting Coulombic limit mH ¯ qL qH α4 m2 δm ∼ d L Energy Λd mH mL For U(1): Atomic Dark Matter D. E. Kaplan, G. Z. Krnjaic, K. R. Rehermann, C.M. Wells (2009) spin 0 spin 1 Confined qH ¯ qL Λ2 d dark pion dark rho δm ∼ πd ρd mH
  22. 22. Spin Temperature Need to explain why iDM is in ground state Self interaction keeps DM in equilibrium ρ d ρ d → πd πd Solves de-excitation problem Spin temperature low nρd = exp(−δm/Tspin ) n πd Kinetically decouple late, smaller spin temperature Tspin 10 keV ∼
  23. 23. Dark Matter Couplings Couples to a secluded U(1) Two choices for anomaly-free charges Vector Coupling µ Jd = qH γ µ qH − qL γ µ qL ¯ ¯ Does not forbid quark masses Axial-Vector Coupling µ Jd = qH γ µ γ 5 qH − qL γ µ γ 5 qL ¯ ¯ Forbids quark masses until U(1)d Higgsed
  24. 24. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 µν 1 µν LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν F mixing 4 4 2 4 d 4
  25. 25. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 µν 1 µν LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν F mixing 4 4 2 4 d 4 Higgs U(1)d near the electroweak scale LHiggs = |Dµ φd |2 − V (φd ) → m2 A2 d d md = 2gd vφ
  26. 26. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut 1 µν 1 µν µν 1 µν 1 µν LU(1) = − Fd Fdµν − B Bµν − Fd Bµν → −kineticFdµν − B Bµν F mixing 4 4 2 4 d 4 Higgs U(1)d near the electroweak scale LHiggs = |Dµ φd |2 − V (φd ) → m2 A2 d d md = 2gd vφ Gives mass to fermions LYuk = +c yL q L q L φ c † yH q H qH φ mf = yf vφ
  27. 27. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad 2 2 A d
  28. 28. Coupling to Standard Model Kinetically mix U(1)d with U(1)Y U (1)d U (1)Y DM SM ψgut L = −Fd − FEM − Fd FEM + m2 A2 + JEM AEM + Jd Ad 2 2 A d redefine SM photon AEM → AEM − Ad L = −Fd − FEM + m2 A2 + JEM (AEM − Ad ) + Jd Ad 2 2 A d µ Lint ∝ Jem Adµ SM is milli-charged under dark U(1), DM is neutral under EM
  29. 29. Effective Field Theory Use EFT to describe interactions of mesons Dark Matter Scattering ¯ qH qL ρµ d mass πd elastic inelastic πd→πd πd→ρd † 2 † Lfree = ∂µ πd ∂ µ πd − Mπ πd πd 1 † − ρd µν ρµν + Mρ ρ† µ ρµ 2 2 d d d spin 0 meson spin 1 meson πd → −πd ρdµ → (−1)µ ρdµ Parity of new gauge boson determines the allowed interactions in the effective Lagrangian
  30. 30. Axial Coupling Elastic Inelastic πd→πd πd→ρd 1 † ˜ µν 1 † µ ν πd ∂µ πd ∂ν Fd πd ∂ ρd Fdµν Λ2 d Λd dimension 6 velocity suppressed
  31. 31. Axial Coupling Elastic Inelastic πd→πd πd→ρd 1 † ˜ µν 1 † µ ν πd ∂µ πd ∂ν Fd πd ∂ ρd Fdµν Λ2 d Λd dimension 6 velocity suppressed Inelastic scattering dominates q 2 ∼ mN E R q 2 vrel 2 1 2 mN vrel a rel/in = 10−4 Λ2 Λ2 Fhalo mπ Fhalo ER ∼ δm = mπ Nearly pure Inelastic
  32. 32. Size of Couplings DAMA cross section set by ρ q 2 gd 1 σDAMA ∝ ≡ 4 gd e m2 d A feff π q mAd vφ 2 feff = 2 vEW Mass of DM given by mDM = mH = yh vφ vEW Sets mass of Dark Photon mAd vEW
  33. 33. Current Limits on ε 10-2 aµ ϒ(3S) 10-3 ae DA MA 10-4 fixed target 10-5 10-6 10-7 supernova 10-8 10-9 10-2 10-1 1 Pospelov, 0811.1030. Reece and Wang, 0904.1743. mAd (GeV) Bjorken, Essig, Schuster, Toro, 0906.0580
  34. 34. Vector Coupling Elastic Inelastic πd→πd πd→ρd 1 † µν 1 † µ ν˜ πd ∂µ πd ∂ν Fd πd ∂ ρd Fdµν Λ2 d Λd charge-radius scattering velocity suppressed Rel Elastic scattering dominates: 108 Rin Nearly pure Elastic: Not good for DAMA
  35. 35. CP-Violation Θ term in dark QCD sector ˜ Lcpv = Θd TrGd Gd Not necessarily small Leads to mixing between states of different parity e.g. πd ↔ a0d In limit mL → 0 mH chiral rotation removes Θ term mL Energy For heavy quarks, mixing given by Θd Λd Λd sin θp = πd |Hp |a0d ma0d − mπd 2 λd mL CP effects vanish as mL →0, ∞ ...maximized when mL ≅ Λd
  36. 36. Effects of Parity Violation Admixture of vector and axial interactions θ µν θ ˜ µν Can effectively substitute Fd → cos p Fd + sin p Fd µν 2 2 Elastic Inelastic θp 1 † ˜ µν θp 1 π † ∂ µ ρ ν F cos πd ∂µ πd ∂ν Fd + cos d dµν 2 Λd d 2 Λ2d θp 1 † µν θp 1 † µ ν˜ + sin sin πd ∂ ρd Fdµν 2 Λ2 πd ∂µ πd ∂ν Fd + 2 Λd d cel † cin † µν 2 πd ∂µ πd ∂ν Fd + µν πd ∂µ ρd ν Fd Λd Λd Neither axial or vector, but elastic and inelastic interactions How to discover suppressed elastic scatterings?
  37. 37. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Directional Detection Experiments Collider Signatures
  38. 38. Simple Halo Model N-body simulations indicate that density falls off more steeply at larger radii 3.5 3 Assume velocity distribution is: 3.0 isothermal, isotropic, Gaussian v 2 f (v)/10−4 2.5 2 2.0 v0 2 2 f (v) ∝ e−(v/v0 ) − e−(vesc /v0 ) Θ(vesc − v) 1.5 1 1.0 0.5 vesc 0 0.0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  39. 39. Modified SHM −(v/v0 )2α −(vesc /v0 )2α f (v) ∝ e −e Θ(vesc − v) 3.5 α parameterizes variation in the 3 3.0 α=1.1 tail of the distribution ) v 2 f (v)/10−4 2.5 α=0.8 captures qualitative behavior of 2 2.0 v0 ) N-body simulations 1.5 1 1.0 0.5 600 vesc 0 0.0 0 100 200 300 400 500 600 0 100 200 300 400 500 600 velocity
  40. 40. Setting Limits on a Cross Section Usually set limits on cross section per nucleon Factor of A4 to translate iDM has non-trivial kinematics Light nuclei have no cross section Should use particle physics parameters Z 2 αEM m2 d A σ∝ f2 f4 cin gd
  41. 41. Marginalizing over Uncertainties How do current experiments constrain parameters? “Unknowns” particle physics astrophysics mπd , δm, cin v0 , vesc , α cin is coupling for inelastic 0.8 ≤ α ≤ 1.25 operator 200 ≤ v0 ≤ 300 cel/cin = relative strength of 500 ≤ vesc ≤ 600 elastic sub-component
  42. 42. Marginalizing over parameters Minimize χ2 over 6 parameters using results from direct detection experiments Nexp Xipred − Xiobs χ2 (mπd , δ, fi , v0 , vesc , α) = ı=1 σi Fit to DAMA recoil spectrum Require that theory predicts ≤ number of events seen by each null experiment
  43. 43. Parameter Space 140 cel/cin = 0.15 120 mπd ∼ 70 GeV δm ∼ 95 keV ∆m keV 100 80 60 Dark Matter Mass GeV 100 200 300 400 500 600
  44. 44. Parameter Space 800 800 CDMS vesc + vE Minimum Velocity 700 700 ZEPLIN 600 600 CRESST 500 500 140 ZEP3 CRESST 400 400 ZEP2 ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 Recoil Energy (keV) ∆m keV 100 80 60 Dark Matter Mass GeV 100 200 300 400 500 600
  45. 45. Parameter Space 800 800 vesc + vE Minimum Velocity 700 700 CDMS 600 600 CRESST ZEPLIN 500 500 140 ZEP3 CRESST 400 400 ZEP2 ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 Recoil Energy (keV) ∆m keV 100 80 ✖ ZEP3 Zep2 efficiency, CRESST 60 exposure lower than Dark Matter Mass GeV 100 200 300 400 500 600 Zep3
  46. 46. Parameter Space 800 800 vesc + vE Minimum Velocity 700 700 CDMS 600 600 ZEPLIN 500 500 140 CRESST ZEP3 CRESST 400 400 ZEP2 ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 ✖ ZEP2 Recoil Energy (keV) ∆m keV 100 80 ✖ ZEP3 60 Dark Matter Mass GeV 100 200 300 400 500 600
  47. 47. Parameter Space 800 800 vesc + vE Minimum Velocity 700 700 CDMS ZEP2 600 600 500 500 CDMS 140 CRESST 400 400 ZEPLIN ✖ CRESST 300 300 120 20 20 40 40 60 60 80 80 100 100 ✖ ZEP2 Recoil Energy (keV) ∆m keV 100 80 ZEP2 ✖ CDMS ✖ ZEP3 60 Dark Matter Mass GeV 100 200 300 400 500 600
  48. 48. DAMA Best fits Modulation Amplitude 0.03 cel/cin=0 cel/cin=0.15 countskgdaykeVee 0.02 0.01 0.00 Recoil Energy keVee 0 2 4 6 8
  49. 49. Correlations The same model, but with different halo profiles... cel/cin = 0.15 v0 = 300 0.03 vesc = 500 α = 0.95 cpdkgkeVee 0.02 v0 = 220 0.01 vesc = 550 α = 0.8 0.00 Parameters consistent with DAMA and null Recoil Energy keVee 0 2 4 6 8 experiments 32 24 Challenge to distinguish astrophysical parameters 16 8 0 50 100 150 200 250 300 350 400 450 500
  50. 50. LUX/Xenon100 100 kg Liquid Xe detectors (upgrade for Xenon10) Will see a large number of events Winter Summer 0.20 0.25 0.20 0.15 Frequency Frequency 0.15 0.10 0.10 0.05 0.05 0.00 0.00 0 20 40 60 80 100 0 20 40 60 80 100 Total Number of Events Observed Total Number of Events Observed (1000 kg-day exposure ~ 1 month!) Tail down to small 5 events
  51. 51. LUX/Xenon100 Recoil Spectrum 5.00 1000 kg· day : summer 1.00 : winter 0.50 countskeV 0.10 0.05 Recoil Energy keV 0 20 40 60 80 Elastic subcomponent apparent beneath energy threshold, but inelastic kinematics get washed out
  52. 52. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Directional Detection Experiments Collider Signatures
  53. 53. Directional Detection Experiments Detector πd πd Good angular resolution requires sufficiently long tracks (~1 mm) Head-tail discrimination requires large 1 mm threshold energy (~50 keV)
  54. 54. Directional Detection Experiments Detector πd πd Good angular resolution requires sufficiently long tracks (~1 mm) Head-tail discrimination requires large 1 mm threshold energy (~50 keV) CF4 : DMTPC, NEWAGE, MIMAC CS2 : DRIFT } Need heavier nuclei to see inelastic signal Iodine (A=127) or Xenon (A=131) Finkbeiner, Lin, and Weiner, 0906.0002.
  55. 55. Directional Detection Motivation Detector 6 am Daily Modulation Wind direction changes every 12 hrs Large Amplitude 45°( Detector Daily modulation amplitude ~ 100% Annual modulation amplitude ~ 5% 6 pm Smaller Backgrounds Spergel, Phys. Rev D 37, 1353 (1988).
  56. 56. Directional Detection )γ πd ¯ vE ¯ vE πd Different dynamics in dark matter sector result in different cosγ spectra iDM vesc − vmin dR cos γ ≤ vE d cos γ 1 mN ER vmin = √ + δm eDM 2mN ER µ cos γ
  57. 57. Directional Detection 0.020 cel/cin = 0.15 0.010 0.005 countskgday Cross over point 0.002 0.001 eDM FF 4 5 10 2 104 iDM 1 104 1.0 0.8 0.6 0.4 0.2 0.0 0.2 cosΓ
  58. 58. Directional Detection 0.005 cel/cin = 0.15 0.002 Cross over rate countskgday 0.001 5 104 2 104 1 104 DMTPC 100 kg· y 1.0 0.8 0.6 0.4 0.2 0.0 CosΓ
  59. 59. Plan of Talk DAMA Inelastic Dark Matter Composite dark matter models Experimental Prospects Uncertainties in halo profile Directional Detection Experiments Collider Signatures
  60. 60. Collider Signatures + − + Light mesons ωD ηD − √ ωD s ΛD 23-4/5-))' 0/-(*5506)'!-7') !#$%'()*# +*,'#-. qD +!#*/01)0*/ √ s ΛD e− e+ #*89+5:-;+'#0(5- ''/) ¯ qD γ mA ΛD ωD ωD Lepton Jets =**)'!-;#*!8()- + − ωD #'(*05-*-;+*)*/ − ηD + − + ωD
  61. 61. New Tools New Strong Signal Simulation (J. Wacker w/ S. Schumann, P. Richardson) Dark Showering Sherpa Herwig Hadron Spectrum DarkSpecGen Dark Hadronization Sherpa Herwig Cascading to SM DarkSpecGen
  62. 62. Boosted Physics When high pT particles cascade to SM final states producing collimated final states “Lepton Jets” A Challenging Environment Reconstruction is difficult Isolation cuts out signal Cascades produce heterogeneous final states
  63. 63. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles
  64. 64. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗
  65. 65. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗
  66. 66. 1 Light Flavor Spectrum No light pions - Only eta prime No hadronic decays ~1 dozen quasi stable particles 2Λdark 2++ 1−+ 2−− 2 +− 1+− 0−− 0−+ 1− − Λdark 0 ++ 0+− J ++ J +− J −+ J −− Only “weak” decays: quasi-stable particles !#$%'' +$,#'%-+.)( ωD #()*#! ηD $/0$,$1'- A∗ A∗ Some short-lived Some long lived Lots of visible particles
  67. 67. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark J ++ J +− J −+ J −− J ++ J +− J −+ J −−
  68. 68. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−
  69. 69. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−   ¯ qq qq¯  q q q q  π∼ ¯ ¯  .. .
  70. 70. Multiple Light Flavor Spectrum Light pions mπ = mq Λdark I=0 I=1 Λdark Decays to Dark Pions J ++ J +− J −+ J −− J ++ J +− J −+ J −−   ¯ qq qq¯  q q q q  Unstable O(NF ) few π∼ ¯ ¯  visible .. . Stable O(NF ) 2 particles
  71. 71. No light flavors “Quirks” (Luty et al 2008) Spectra similar to 1 light flavor (Lattice calculations available) We don’t know how to hadronize (how to cut color lines) More theory work necessary
  72. 72. Two-Lepton Lepton Jets 2 oppositely signed leptons in a small cone + − + − ∆RSignal 0.1 ∼ Hadron Ad 0.1 ∆RIso 0.4 ∼ ∼ Hadron µ+ µ− e+ e−
  73. 73. Four-Lepton Lepton Jet Multistep cascade Decay Topology Relevant Parameters pT φ1 mφ1 mφ2 φ2 φ2 cτφ1 cτφ2 φ1 Displaced Vertices ∆RSignal 0.1 cτφ1 ∼ 0.1 ∆RIso 0.4 ∼ ∼ cτφ2
  74. 74. Conclusions Inelastic DM is an elegant explanation for DAMA vs the Rest of the World Discovery or Refutation Imminent New scale to explain: New Dynamics New measurements are important Direct Detection Colliders

×