Carga y descarga de un condensador y transformadores

603 views
490 views

Published on

Experimental techniques in Electromagnetism developed at Universidad de Córdoba (Spain) in 2004. Capacitor and transformer loading and unloading.

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
603
On SlideShare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
7
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Carga y descarga de un condensador y transformadores

  1. 1. Javier García Molleja T. E. Electromagnetismo 1 SESIÓN 3. CARGA Y DESCARGA DE UN CONDENSADOR Y TRANSFORMADORES. Carga de un condensador La teoría expuesta a continuación está tomada de “Física para la ciencia y la tecnología”, volumen 2, de P. A. Tipler, 4ª edición (editorial Reverté). Esta práctica ha sido redactada con Microsoft® Word de Microsoft® Office 2000 para Windows® XP. Las gráficas han sido realizadas con Microsoft® Excel de Microsoft® Office 2000 para Windows® XP. Estudiaremos los procesos de transitorios de carga y descarga de un condensador en serie con una resistencia cuando se le comunica una tensión de continua. Un circuito destinado a la carga de un condensador consta de una pila de corriente continua, un interruptor, una resistencia y un condensador descargado. El interruptor, abierto inicialmente, se cierra en t = 0. Inmediatamente empieza a fluir la carga a través de la resistencia depositándose sobre la placa positiva del condensador. Si la carga del condensador en un instante cualquiera es Q y la corriente del circuito es I, la primera regla de Kirchhoff nos da ε − VR – VC = 0 o sea ε - IR – Q/C = 0 En este circuito la corriente es igual a la variación con el tiempo de la carga (creciente) en el condensador I = +dQ/dt. Sustituyendo esto en la ecuación anterior se obtiene ε = R (dQ/dt) + Q/C En el instante t = 0 la carga es cero y la corriente vale I0 = ε/R. La carga, por lo tanto, aumenta y la corriente disminuye. La carga alcanza un valor máximo Qf = Cε, obtenido de las ecuaciones anteriores cuando la corriente I es igual a cero. ε/R – Q/RC = dQ/dt ⇒ ∫0 Q dQ/ (ε/R – Q/RC) = ∫0 t dt ⇒ -RC ln (ε/R –Q/RC)]0 Q = t ⇒ ln (ε/R – Q/RC) – ln ε/R = -t/RC ⇒ ε/R – Q/RC = ε/R e -t/RC ⇒ ε/R (1 – e -t/RC ) = Q/RC ⇒ Q = εC (1 – e -t/RC ) ⇒ Q = Qf (1 – e -t/RC ) Integrando esta expresión se llega a que I =ε/R e -t/RC ⇒ VR = ε e -t/τ , donde τ = RC es la constante de tiempo. En la tableta de conexiones LEYBOLD se instala el circuito pedido para la sesión, teniendo la cautela de descargar el condensador uniendo sus bornes durante un minuto. Tras encender el ordenador RABFISA.07 150.214.117.117 y cargar el programa GENERIS debemos colocar los canales del convertidor analógico-digital JEULIN (Ref. 02998) en los puntos pedidos. Dentro del programa informático debemos entrar en el menú ACQUISITION y cargar el programa CARGA.ACQ. Al pedirnos las medidas debemos conectar el interruptor para que en circuito fluya corriente y poder medir así la carga del condensador, obteniendo los datos requeridos por impresora (los errores absolutos vienen dados por la sensibilidad del programa, que es el encargado de medir el tiempo, la tensión de la resistencia y la tensión del condensador). Como debemos representar ln (VR) frente a t, se muestran aquí los valores calculados, junto con su error relativo. TIEMPO (s) LN (VR) 0.00 ± 0.01 (∞ %) 1.4422 ± 0.0024 (0.17 %) 1.00 ± 0.01 (1 %) 1.354 ± 0.003 (0.22 %) 2.00 ± 0.01 (0.5 %) 1.250 ± 0.003 (0.24 %) 3.00 ± 0.01 (0.33 %) 1.147 ± 0.004 (0.35 %) 4.00 ± 0.01 (0.25 %) 1.061 ± 0.004 (0.38 %) 5.00 ± 0.01 (0.2 %) 0.952 ± 0.004 (0.42 %) 6.00 ± 0.01 (0.17 %) 0.854 ± 0.005 (0.59 %) 7.00 ± 0.01 (0.14 %) 0.756 ± 0.005 (0.66 %) 8.00 ± 0.01 (0.13 %) 0.668 ± 0.006 (0.9 %) 9.00 ± 0.01 (0.11 %) 0.582 ± 0.006 (1.03 %) 10.0 ± 0.1 (1 %) 0.489 ± 0.007 (1.43 %) 11.0 ± 0.1 (0.91 %) 0.385 ± 0.007 (1.82 %) 12.0 ± 0.1 (0.83 %) 0.285 ± 0.008 (2.81 %) 13.0 ± 0.1 (0.77 %) 0.174 ± 0.009 (5.17 %) 14.0 ± 0.1 (0.71 %) 0.113 ± 0.009 (7.96 %) 15.0 ± 0.1 (0.67 %) -0.010 ± 0.011 (110 %) 16.0 ± 0.1 (0.63 %) -0.094 ± 0.011 (11.7 %) 17.0 ± 0.1 (0.59 %) -0.186 ± 0.013 (6.99 %) 18.0 ± 0.1 (0.56 %) -0.288 ± 0.014 (4.86 %)
  2. 2. Javier García Molleja T. E. Electromagnetismo 2 19.0 ± 0.1 (0.53 %) -0.400 ± 0.015 (3.75 %) 20.0 ± 0.1 (0.5 %) -0.431 ± 0.016 (3.71 %) 21.0 ± 0.1 (0.48 %) -0.562 ± 0.018 (3.20 %) 22.0 ± 0.1 (0.45 %) -0.713 ± 0.021 (2.95 %) 23.0 ± 0.1 (0.43 %) -0.755 ± 0.022 (2.91 %) 24.0 ± 0.1 (0.42 %) -0.89 ± 0.03 (3.37 %) 25.0 ± 0.1 (0.4 %) -0.99 ± 0.03 (3.03 %) 26.0 ± 0.1 (0.38 %) -0.94 ± 0.03 (3.19 %) 27.0 ± 0.1 (0.37 %) -1.11 ± 0.04 (3.6 %) 28.0 ± 0.1 (0.36 %) -1.14 ± 0.04 (3.51 %) 29.0 ± 0.1 (0.34 %) -1.24 ± 0.04 (3.23 %) 30.0 ± 0.1 (0.33 %) -1.39 ± 0.04 (2.88 %) 31.0 ± 0.1 (0.32 %) -1.47 ± 0.05 (3.4 %) 32.0 ± 0.1 (0.31 %) -1.66 ± 0.06 (3.61 %) 33.0 ± 0.1 (0.3 %) -1.66 ± 0.06 (3.61 %) 34.0 ± 0.1 (0.29 %) -1.66 ± 0.06 (3.61 %) 35.0 ± 0.1 (0.29 %) -1.90 ± 0.07 (3.68 %) 36.0 ± 0.1 (0.28 %) -1.90 ± 0.07 (3.68 %) 37.0 ± 0.1 (0.27 %) -1.90 ± 0.07 (3.68 %) 38.0 ± 0.1 (0.26 %) -2.41 ± 0.12 (4.98 %) 39.0 ± 0.1 (0.26 %) -2.2 ± 0.1 (4.55 %) 40.0 ± 0.1 (0.25 %) -2.41 ± 0.12 (4.98 %) 41.0 ± 0.1 (0.24 %) -2.2 ± 0.1 (4.55 %) 42.0 ± 0.1 (0.24 %) -3.0 ± 0.2 (6.67 %) 43.0 ± 0.1 (0.23 %) -2.66 ± 0.15 (5.64 %) 44.0 ± 0.1 (0.23 %) -3.0 ± 0.2 (6.67 %) 45.0 ± 0.1 (0.22 %) -3.0 ± 0.2 (6.67 %) 46.0 ± 0.1 (0.22 %) -3.0 ± 0.2 (6.67 %) 47.0 ± 0.1 (0.21 %) -3.0 ± 0.2 (6.67 %) 48.0 ± 0.1 (0.21 %) -3.5 ± 0.4 (11.43 %) 49.0 ± 0.1 (0.2 %) -2.66 ± 0.15 (5.64 %) 50.0 ± 0.1 (0.2 %) -3.5 ± 0.4 (11.43 %) 51.0 ± 0.1 (0.2 %) -2.66 ± 0.15 (5.64 %) 52.0 ± 0.1 (0.19 %) -3.5 ± 0.4 (11.43 %) 53.0 ± 0.1 (0.19 %) -∞ ± ∞ 54.0 ± 0.1 (0.19 %) -3.0 ± 0.2 (6.67 %) 55.0 ± 0.1 (0.18%) -2.66 ± 0.15 (5.64 %) 56.0 ± 0.1 (0.18 %) -2.66 ± 0.15 (5.64 %) 57.0 ± 0.1 (0.18 %) -2.66 ± 0.15 (5.64 %) 58.0 ± 0.1 (0.17 %) -5 ± 1 (20 %) 59.0 ± 0.1 (0.17 %) -2.66 ± 0.15 (5.64 %) 60.0 ± 0.1 (0.17 %) -2.66 ± 0.15 (5.64 %) Con estos datos se construye la GRÁFICA 1 para calcular así el valor de la constante de tiempoτ. Es necesario mencionar que no se han utilizado los 61 valores de la tabla para representar la gráfica, ya que a partir de t = 37 s los valores son bastante pequeños y las fluctuaciones del sistema (puesto que el condensador está ya cercano a estar completamente cargado) hacen que tomen gran separación entre ellos, causando así una desviación del comportamiento lineal observado antes. Podemos saber los valores de la pendiente y de la ordenada en el origen, los cuales serán esenciales para nuestros cálculos. Anteriormente, hemos medido con un polímetro el valor de la resistencia: R = 9820 ± 10 ΩΩΩΩ M = -0.09294807 s-1 ∆M = 0.0006747 M=-0.0929 ± 0.0007 s-1 Error relativo = 0.75 % M = 1/τ = 1/RC ⇒ C = 1/MR = 1/(0.0929*9820) = 0.001096157 F
  3. 3. Javier García Molleja T. E. Electromagnetismo 3 ∆C = √(-1/M 2 R) 2 (∆M) 2 + (-1/MR 2 ) 2 (∆R) 2 = √[-1/(-0.0929) 2 9820] 2 (0.0007) 2 + [-1/(-0.0929) 98202 ]2 (10)2 = √6.821976962⋅10-11 + 1.246013136⋅10-12 = 8.334613534⋅10-6 C = 0.001096 ± 0.000009 F Error relativo =0.82 % τ = RC =9820 0.001096 = 10.76272 s ∆τ = √C2 (∆R)2 + R2 (∆C)2 = √1.201216⋅10-4 + 7.8110244⋅10-3 = 0.089056981 τ = 10.76 ± 0.09 s Error relativo = 0.83 % N = ln ε = 1.40962348 V ∆N = 0.01451006 N = 1.410 ± 0.015 V Error relativo = 1.06 % ε = eN = 4.095955404 V ∆ε = ε ∆N = 0.061439331 ε = 4.10 ± 0.07 V Error relativo =1.71 % Este valor no coincide con el indicado por el generador PUPIL-POWER-SUPPLY 1 (Ref. P3130-ID), que es de ε = 4.6 ± 0.1 V. Error relativo = 2.17 %. La disparidad puede ser debida a una toma de medidas deficiente o que la medida dada por el generador sólo indicaba con exactitud los órdenes en los que se trabajaba. Descarga de un condensador Un circuito que conste de un interruptor, una resistencia y un condensador con una carga inicial +Q0 en la placa superior y –Q0 en la placa inferior puede servir para descargar a éste. Si el interruptor está abierto se evita que fluya carga a través de la resistencia. La diferencia de potencial a través del condensador es inicialmente V0 = Q0/C, siendo C la capacidad. Cerremos el interruptor en el instante t = 0. Puesto que ahora existe una diferencia de potencial entre los extremos de la resistencia, debe pasar una corriente por la misma. La corriente inicial es I0 = V0/R0 = Q0/RC. La corriente se debe al flujo de carga que va de la placa positiva a la negativa, pasando por la resistencia y así, después de un cierto tiempo, la carga sobre el condensador se ve reducida. Como la carga sobre el condensador va decreciendo y estamos tomando como positiva la corriente en el sentido de las agujas del reloj, la intensidad de corriente es igual a la disminución de esta carga por unidad de tiempo. Si Q es la carga sobre el condensador en un instante cualquiera, la corriente en dicho momento es I = -dQ/dt. Recorriendo el circuito en el sentido de la corriente nos encontramos con una caída de potencia IR en la resistencia y un aumento de potencial Q/C entre las placas del condensador. La primera regla de Kirchhoff nos da Q/C – IR = 0, sonde Q e I son funciones de tiempo y están relacionadas. Q/C + R (dQ/dt) = 0 ⇒ dQ/dt = -Q/RC ⇒ dQ/Q = -dt/RC ⇒ ln (Q/Q0) = -t/RC ⇒ Q = Q0 e -t/RC = Q0 e -t/τ , en donde τ = RC es la constante de tiempo (es el tiempo durante el cual la carga disminuye hasta 1/e de su valor original). Si derivamos esta expresión se obtiene la intensidad de corriente: I = Q0/RC e-t/RC = V0/R e-t/RC En el proceso de toma de datos mediante un ordenador (que posee un programa adecuado para ello) que estábamos realizando debemos poner el interruptor en la posición indicada cuando el cronómetro indique t = 61 s. Se procede ahora de la misma manera que hasta este momento. Los datos vendrán dados por impresora, luego la tabla que se adjunta seguidamente es para representar ln (-VR) frente a t. Tiempo (s) LN (-VR) 61.0 ± 0.1 (0.16 %) -∞ ± ∞ 62.0 ± 0.1 (0.16 %) 1.4469 ± 0.0024 (0.17 %) 63.0 ± 0.1 (0.16 %) 1.345 ± 0.003 (0.22 %) 64.0 ± 0.1 (0.16 %) 1.250 ± 0.003 (0.24 %) 65.0 ± 0.1 (0.15 %) 1.147 ± 0.004 (0.35 %) 66.0 ± 0.1 (0.15 %) 1.054 ± 0.004 (0.38 %) 67.0 ± 0.1 (0.15 %) 0.971 ± 0.004 (0.41 %) 68.0 ± 0.1 (0.15 %) 0.863 ± 0.005 (0.58 %) 69.0 ± 0.1 (0.15 %) 0.775 ± 0.005 (0.65 %) 70.0 ± 0.1 (0.14 %) 0.668 ± 0.006 (0.9 %) 71.0 ± 0.1 (0.14 %) 0.582 ± 0.006 (1.03 %) 72.0 ± 0.1 (0.14 %) 0.464 ± 0.007 (1.51 %)
  4. 4. Javier García Molleja T. E. Electromagnetismo 4 73.0 ± 0.1 (0.14 %) 0.399 ± 0.007 (1.75 %) 74.0 ± 0.1 (0.14%) 0.300 ± 0.008 (2.67 %) 75.0 ± 0.1 (0.13 %) 0.207 ± 0.009 (4.35 %) 76.0 ± 0.1 (0.13 %) 0.10 ± 0.01 (10 %) 77.0 ± 0.1 (0.13 %) 0.01 ± 0.01 (100 %) 78.0 ± 0.1 (0.13 %) -0.117 ± 0.012 (10.26 %) 79.0 ± 0.1 (0.13 %) -0.186 ± 0.013 (7 %) 80.0 ± 0.1 (0.13 %) -0.236 ± 0.013 (4.94 %) 81.0 ± 0.1 (0.12 %) -0.371 ± 0.015 (4.04 %) 82.0 ± 0.1 (0.12 %) -0.446 ± 0.016 (3.59 %) 83.0 ± 0.1 (0.12 %) -0.528 ± 0.017 (3.22 %) 84.0 ± 0.1 (0.12 %) -0.635 ± 0.019 (2.99 %) 85.0 ± 0.1 (0.12 %) -0.734 ± 0.021 (2.86 %) 86.0 ± 0.1 (0.12 %) -0.799 ± 0.023 (2.88 %) 87.0 ± 0.1 (0.11 %) -0.94 ± 0.03 (3.19 %) 88.0 ± 0.1 (0.11 %) -0.94 ± 0.03 (3.19 %) 89.0 ± 0.1 (0.11 %) -1.05 ± 0.03 (2.86 %) 90.0 ± 0.1 (0.11 %) -1.14 ± 0.04 (3.51 %) 91.0 ± 0.1 (0.11 %) -1.31 ± 0.04 (3.05 %) 92.0 ± 0.1 (0.11 %) -1.24 ± 0.04 (3.23 %) 93.0 ± 0.1 (0.11 %) -1.47 ± 0.05 (3.4 %) 94.0 ± 0.1 (0.11 %) -1.47 ± 0.05 (3.4 %) 95.0 ± 0.1 (0.11 %) -1.56 ± 0.05 (3.21 %) 96.0 ± 0.1 (0.1 %) -1.47 ± 0.05 (3.4 %) 97.0 ± 0.1 (0.1 %) -1.56 ± 0.05 (3.21 %) 98.0 ± 0.1 (0.1 %) -1.83 ± 0.07 (3.83 %) 99.0 ± 0.1 (0.1 %) -1.90 ± 0.07 (3.68 %) 100 ± 1 (1 %) -1.83 ± 0.07 (3.83 %) 101 ± 1 (0.99 %) -2.04 ± 0.08 (3.92 %) 102 ± 1 (0.98 %) -2.04 ± 0.08 (3.92 %) 103 ± 1 (0.97 %) -2.04 ± 0.08 (3.92 %) 104 ± 1 (0.96 %) -2.2 ± 0.1 (4.55 %) 105 ± 1 (0.95 %) -2.2 ± 0.1 (4.55 %) 106 ± 1 (0.94 %) -2.53 ± 0.13 (5.14 %) 107 ± 1 (0.93 %) -2.2 ± 0.1 (4.55 %) 108 ± 1 (0.93 %) -2.2 ± 0.1 (4.55 %) 109 ± 1 (0.92 %) -2.2 ± 0.1 (4.55 %) 110 ± 1 (0.91 %) -2.53 ± 0.13 (5.14 %) 111 ± 1 (0.9 %) -2.66 ± 0.15 (5.64 %) 112 ± 1 (0.89 %) -2.66 ± 0.15 (5.64 %) 113 ± 1 (0.88 %) -2.66 ± 0.15 (5.64 %) 114 ± 1 (0.88 %) -2.53 ± 0.13 (5.14 %) 115± 1 (0.87 %) -2.53 ± 0.13 (5.14 %) 116 ± 1 (0.86 %) -2.41 ± 0.12 (4.98 %) 117 ± 1(0.85 %) -2.66 ± 0.15 (5.64 %) 118 ± 1 (0.85 %) -3.5 ± 0.4 (11.43 %) 119 ± 1 (0.84 %) -3.0 ± 0.2 (6.67 %) 120 ± 1 (0.83 %) -3.2 ± 0.3 (9.38 %) Con estos datos va a confeccionarse la GRÁFICA 2, teniendo en cuenta que a partir de t = 101 s no se han utilizado datos para la representación debido a que el condensador ya estaba suficientemente descargado y los datos varían mucho y no siguen por tanto un comportamiento lineal. La medida t = 61 s no ha sido representada, pues éste es el momento en el que se cambió el interruptor de posición. M = -0.08871529 s-1 ∆M = 0.00097824 M = -0.089 ± 0.001 s-1 Error relativo = 1.12 % M= 1/τ = 1/RC ⇒ C = 1/RM = 0.00114419 F
  5. 5. Javier García Molleja T. E. Electromagnetismo 5 ∆C = √(-1/M 2 R) 2 (∆M) 2 + (-1/MR 2 ) 2 (∆R) 2 = √ 1.652787417⋅10 -10 + 1.357606897⋅10 -12 = 1.290877022⋅10-5 Por lo tanto: C = 0.001144 ± 0.000013 F Error relativo = 1.14 % N = 6.87257592 V ∆N = 0.08049447 N = 6.87 ± 0.09 V Error relativo = 1.31 % τ = RC = 9820 0.00114 = 11.1948 s ∆τ = √R2 (∆C)2 + C2 (∆R)2 = √0.016297075 + 1.308736⋅10-4 = 0.128171559 τ = 11.19 ± 0.13 s Error relativo =1.16 % Combinado las dos medidas obtenidas sobre la capacidad del condensador podemos obtener el valor más exacto. C = (0.001096 + 0.001144)/2 = 0.00112 F ∆C = √0.000009 2 + 0.000013 2 = 1.58113883⋅10 -5 C = 0.001120 ± 0.000016 F Error relativo = 1.43 % Combinando las dos medidas obtenidas sobre la constante de tiempo del condensador podemos obtener un valor más aproximado. τ = (10.76 + 11.19)/2 = 10.975 s ∆τ = √0.092 0.132 = 0.158113883 τ = 10.98 ± 0.16 s Error relativo = 1.46 %
  6. 6. Javier García Molleja T. E. Electromagnetismo 6 Transformadores En esta sección se comprenderá el funcionamiento de los transformadores eléctricos y se estudiarán las leyes que los rigen a partir de la Ley de Faraday-Lenz. Un transformador es un dispositivo utilizado para elevar o disminuir el voltaje en un circuito sin una apreciable pérdida de potencia. Está compuesto por dos bobinas de hilo conducto arrolladas sobre un núcleo de hierro común. La bobina que se conecta a la fuente de entrada se denomina primario y la otra, secundario. Puede utilizarse cualquiera de los dos arrollamientos de un transformador para primario o secundario. Su funcionamiento se basa en el hecho de que una corriente alterna en un circuito inducirá una fuerza electromotriz alterna en otro circuito próximo debido a la inductancia mutua entre ambos. La función del núcleo de hierro consiste en aumentar el campo magnético creado por una corriente determinada de forma que prácticamente todo el flujo magnético que atraviese uno de los arrollamientos atraviese el otro. Si no se perdiera potencia alguna, el producto del voltaje y la corriente en el circuito secundario sería igual al producto de la corriente y el voltaje en el circuito primario. Así, si el voltaje aumenta, la corriente disminuye y viceversa. Las pérdidas de potencia proceden del calentamiento por el efecto Joule en las pequeñas resistencias de ambos arrollamientos o en las espiras de corriente dentro del núcleo (corrientes turbillonarias de Foucault) y a la histéresis que se presenta en los núcleos de hierro. Despreciemos estas pérdidas para nuestros cálculos. Consideremos un transformador con una fem V1 en el primario de N1 vueltas; el arrollamiento secundario de N2 vueltas es un circuito abierto. Debido al núcleo de hierro, existe un flujo magnético grande que atraviesa ambos arrollamientos aunque la corriente magnetizante Im en el circuito primario sea muy pequeña. Podemos despreciar las resistencias de los arrollamientos en comparación con sus reactancias inductivas. El primario es entonces un circuito simple formado por un generador de fem alterna y una inductancia pura. La corriente (de magnetización) y la tensión en el primario están desfasadas entre sí 90º y la potencia media disipada en el arrollamiento primario es cero. Si Φvuelta es el flujo magnético que atraviesa una espira o vuelta del primario, la caída de tensión en él es VL1 = N1dΦvuelta/dt. Aplicando la regla de las mallas de Kirchhoff al circuito del primario se tiene entonces V1 – N1dΦvuelta/dt = 0 ⇒ V1 = N1dΦvuelta/dt Si se considera que no existe ninguna pérdida de flujo en el núcleo de hierro, el flujo que atraviesa cada espira es el mismo en ambos arrollamientos. Así pues, el flujo total que atraviesa el arrollamiento secundario es N2Φvuelta y la tensión que aparece en dicho secundario es V2 = N2 dΦ/dt Comparando estas ecuaciones, podemos ver que V2 N1 = N2 V1 Si conectamos una resistencia R al circuito secundario aparecerá una corriente en éste I2 que estará en fase con V2. La corriente originará un flujo a través de cada espira que se opondrá a Im del primario, pero V1 no se ve afectada por ésta, ya que sólo depende del generador. El flujo total en el núcleo de hierro no debe variar, así el arrollamiento primario extrae una I1 para mantener Φvuelta. La relación existente, debida a la proporcionalidad del flujo con el producto del número de vueltas por la corriente es N1 I1 = N2 I2, que estará desfasada 180º, pues aparecen flujos que se contrarrestan. Igualando estas relaciones fundamentales llegamos a que V1 I1 = V2 I2 En el arrollamiento primario se colocará el generador a un nivel mínimo y un polímetro 2000JD MULTIMETER (Ref. 960337360) para medir el voltaje. Conectada al mismo núcleo de hierro se colocarán sucesivamente varios arrollamientos secundarios que variarán en su número de vueltas. Éste poseerá otro polímetro 2000JD MULTIMETER (Ref. 960337354) indicado para la medición de la tensión en este circuito (los errores absolutos vienen dados por la sensibilidad máxima de aparato que se utiliza para la medición). Los datos obtenidos vienen expresados en la hoja de práctica. Al representar V2 frente a V1 debe verificarse que la pendiente será igual (debido a una de las leyes) a N2/N1 N2 = 450 vueltas N2/N1 = 450/450 = 1 Ordenada en el origen = 0 M = 1.01452194 ∆M = 0.00069496 M = 1.0145 ± 0.0007 Error relativo = 0.07 % N = -0.07659426 V ∆N = 0.0075487 N = -0.077 ± 0.008 V Error relativo = 10.39 %
  7. 7. Javier García Molleja T. E. Electromagnetismo 7 N2 = 900 vueltas N2/N1 = 900/450 =2 Ordenada en el origen = 0 M = 2.03655833 ∆M = 0.00205978 M = 2.0366 ± 0.0021 Error relativo = 0.1 % N = -0.14973242 V ∆N = 0.02237345 N = -0.150 ± 0.023 V Error relativo = 15.33 % N2 = 1800 vueltas N2/N1 = 1800/450 = 4 Ordenada en el origen = 0 M = 4.06553486 ∆M = 0.00529447 M = 4.066 ± 0.006 Error relativo = 0.15 % N = -0.36311313 V ∆N = 0.05750881 N = -0.36 ± 0.06 V Error relativo = 16.67 % Al representar V2 frente a N2 obtenemos que la pendiente sea igual a V1/N1, vamos a verlo. V1/N1 = 12.36/450 = 0.027467 ± 0.000023 V M = 0.0276444 V ∆M = 0.00007698 M = 0.02764 ± 0.00008 V Error relativo =0.29 % N = 0.06 V ∆N = 0.09165151 N = 0.1 ± 0.1 V Error relativo = 100 % Una vez realizado esto podemos colocar el polímetro como un amperímetro en el circuito primario. En el secundario también se colocará el polímetro como amperímetro y será colocado también un reóstato L. TORRES QUEVEDO M13-54-02 (Ref. 6989). Se pasará siempre por un valor dado de la intensidad del primario para realizar así las mediciones más correctas (los errores absolutos vienen dados por la sensibilidad del aparato utilizado). Los datos obtenidos vienen reflejados en la hoja de práctica. Al representar I2 frente a I1 debe verificarse que la pendiente será igual a N1/N2 (debido a una de las leyes de los transformadores). N2 = 450 vueltas N1/N2 = 1 Ordenada en el origen = 0 M = 1.01081791 ∆M = 0.00395449 M = 1.011 ± 0.004 Error relativo = 0.4 % N = -0.00857435 A ∆N = 0.00161381 N = -0.0086 ± 0.0017 A Error relativo = 19.77 % N2 = 900 vueltas N1/N2 = 0.5 Ordenada en el origen = 0 M = 0.48702899 ∆M = 0.00415195 M = 0.487 ± 0.005 Error relativo = 1.03 % N = 0.00222726 A ∆N = 0.00169439 N = 0.0022 ± 0.0017 A Error relativo = 77.27 % N2 = 1800 vueltas N1/N2 = 0.25 Ordenada en el origen = 0 M = 0.25135224 ∆M = 0.00028892 M = 0.2514 ± 0.0003 Error relativo = 0.12 % N = -0.00061013 A ∆N = 0.00011791 N = -0.00061 ± 0.00012 A Error relativo = 19.67 % Al representar I2 frente a 1/N2 debemos comprobar que la pendiente coincide con N1 I1 N1I1 = 450 0.273 = 122.9 ± 0.5 A M = 123.84 A ∆M = 7.48245949 M = 124 ± 8 A Error relativo = 6.45 % N = -0.0108 A ∆N = 0.01099818 N = -0.011 ± 0.011 A Error relativo = 100 %

×