SlideShare a Scribd company logo
1 of 2
KEY


                            GENERAL CHEMISTRY-II (1412)
                                      S.I. # 4

1. Define Dalton’s Law in words and equations.
        In a gaseous mixture the total pressure is given by the sum of partial pressures of
each component:          Ptotal = P1 + P2 + P3 + … where Pi = ni (RT/V) and
(Pi / PT) = (ni / nT) and Pi = Xi Ptotal where Xi is the mole fraction Xi = (ni /ntotal)


2. A mixture containing 2.50 g of each of CH4 (g), C2H4 (g) and C4H10 (g) is contained
in a 2.00 L flask at a temperature of 15°C. (a) Calculate the partial pressure of each
of the gases in the mixture (b) Calculate the total pressure of the mixture.
                 2.50 g CH4 (1mol / 16.04 g) = 0.15586 = 0.156 mol CH4
                 PCH4 = nRT / V  (0.156 mol)(0.0821 atmL)(288K) / 2 L = 1.84 atm
                 2.50 g C2H4 (1 mol / 28.05 g) = 0.0891 mol C2H4
                 PC2H4 = nRT/V  (0.0891 mol)(0.821 atmL)(288K) / 2L = 1.05 atm
                 2.50 g C4H10 (1 mol / 58.12 g) = 0.0430 mol C4H10
                 PC4H10 = nRT/V  (0.0430 mol)(0.821 atmL)(288K) / 2L = 0.508 atm
        Ptotal = PCH4 + PC2H4 + PC4H10  1.84 atm + 1.05 atm + 0.508 atm = 3.40 atm
3. A mixture of gases contains 10.25 g of N2, 2.05 g of H2, and 7.63 g of NH3 g. If
the total pressure of the mixture is 2.35 atm, what is the partial pressure of each
component?
        nN2 = 10.25 g (1 mol / 28.02 g) = 0.3658 mol
        nH2 = 2.05 g (1 mol / 2.016g) = 1.0169 mol = 1.02 mol
        nNH3 = 7.63 g( 1 mol / 17.03 g) = 0.448 mol
        ntotal = 0.3658 + 1.02 + 0.448 = 1.8307 mol = 1.83 mol
        PN2 = (nN2 / ntotal)(Ptotal) = (0.3658 / 1.8307)(2.35 atm) = 0.470 atm
        PH2 = (nPH2 / ntotal)(Ptotal) = (1.0169/1.8307)(2.35 atm) = 1.31 atm
        PNH3 = (nPNH3 / ntotatl)(Ptotal) = (0.448/1.8307)(2.35 atm) = 0.575 atm



4. Calcium hydride reacts with water to form hydrogen gas. Write a balanced
equation and determine how many grams of Calcium hydride are needed to
generate 53.5 L of H2 gas if the pressure of H2 is 814 torr at 21°C.
KEY


               CaH2 (s) + 2 H2O (l)  Ca(OH)2 (aq) + 2 H2 (g)
nH2 = PH2V / RT  (814 torr/760torr) = 1.07 atm, T = 294K
nH2 = 1.07 atm (Kmol/ 0.0821 Latm)(53.5 L/ 294K) = 2.38 mol H2
(2.38 mol H2)(1mol CaH2 / 2 mol H2)(42.10 g CaH2 / 1 mol CaH2) = 50.0 g CaH2


5. What are the mole fractions of each component in a mixture of 5.08 g of O2, 7.17
g of N2, and 1.32 g of H2?

       nO2 = (5.08 g)(1 mol / 32 g) = 0.159 mol
       nN2 = (7.17 g)(1 mol / 28.02g) = 0.256 mol
       nH2 = (1.32 g)(1 mol / 2.016g) = 0.655 mol
       ntotal = 0.159 + 0.256 + 0.655 = 1.070 mol
       Xo2 = nO2/nt = 0.159 / 1.07 = 0.149
       XN2 = nN2/nt = 0.256 / 1.07 = 0.239
       XH2 = nH2/nt = 0.655 / 1.07 = 0.612

6. Hydrogen gas is produced when zinc reacts with sulfuric acid:
       Zn(s) H2SO4 (aq)  ZnSO4 (aq) + H2 (g)
If 159 mL of wet H2 is collected over water at 24°C and a barometric pressure of
738torr, how many grams of Zn have been consumed?
Pt = 738 torr = PH2 + PH2O    Appendix B, V.P. of water at 24C is 22.38 torr

PH2 = (738 torr – 22.38 torr)(1/760 torr) = 0.942 atm

nH2 = PH2V / RT = (0.942 atm)(0.159 L) / (0.0821 Latm)(297 K) = 0.006143 =
                                                                0.00614 mol H2

(0.006143 mol H2)(1 mol Zn / 1 mol H2)(65.39 g Zn / 1 mol Zn) = 0.402 g Zn

More Related Content

What's hot

types of stoichiometric calculations
types of stoichiometric calculationstypes of stoichiometric calculations
types of stoichiometric calculationsvxiiayah
 
Hoofdstuk 2 - Concentraties van oplossingen
Hoofdstuk 2 - Concentraties van oplossingen Hoofdstuk 2 - Concentraties van oplossingen
Hoofdstuk 2 - Concentraties van oplossingen Tom Mortier
 
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - Chemie
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - ChemieHoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - Chemie
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - ChemieTom Mortier
 
Hoofdstuk 4. Chemisch evenwicht - BLT
Hoofdstuk 4. Chemisch evenwicht  - BLTHoofdstuk 4. Chemisch evenwicht  - BLT
Hoofdstuk 4. Chemisch evenwicht - BLTTom Mortier
 
Hoofdstuk 3. Stoichiometrie - BLT
Hoofdstuk 3. Stoichiometrie - BLTHoofdstuk 3. Stoichiometrie - BLT
Hoofdstuk 3. Stoichiometrie - BLTTom Mortier
 
Energetics hess's law & born haber cycle
Energetics  hess's law & born haber cycleEnergetics  hess's law & born haber cycle
Energetics hess's law & born haber cyclePunia Turiman
 
Chapter 3 notes
Chapter 3 notes Chapter 3 notes
Chapter 3 notes Wong Hsiung
 
CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)
CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)
CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)NicoleGala
 
Chemische niet-redox reacties
Chemische niet-redox reactiesChemische niet-redox reacties
Chemische niet-redox reactiesTom Mortier
 
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch EquationChem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch EquationLumen Learning
 
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLT
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLTHoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLT
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLTTom Mortier
 
Hoofdstuk 3. Stoichiometrie - chemie
Hoofdstuk 3. Stoichiometrie - chemieHoofdstuk 3. Stoichiometrie - chemie
Hoofdstuk 3. Stoichiometrie - chemieTom Mortier
 
Ch4 Reactions in Aqueous Solution
Ch4 Reactions in Aqueous SolutionCh4 Reactions in Aqueous Solution
Ch4 Reactions in Aqueous SolutionSa'ib J. Khouri
 

What's hot (20)

#11 Key
#11 Key#11 Key
#11 Key
 
types of stoichiometric calculations
types of stoichiometric calculationstypes of stoichiometric calculations
types of stoichiometric calculations
 
#23 Key
#23 Key#23 Key
#23 Key
 
Hoofdstuk 2 - Concentraties van oplossingen
Hoofdstuk 2 - Concentraties van oplossingen Hoofdstuk 2 - Concentraties van oplossingen
Hoofdstuk 2 - Concentraties van oplossingen
 
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - Chemie
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - ChemieHoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - Chemie
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - Chemie
 
Katitikan ng Pulong-TEKVOC.pdf
Katitikan ng Pulong-TEKVOC.pdfKatitikan ng Pulong-TEKVOC.pdf
Katitikan ng Pulong-TEKVOC.pdf
 
Hoofdstuk 4. Chemisch evenwicht - BLT
Hoofdstuk 4. Chemisch evenwicht  - BLTHoofdstuk 4. Chemisch evenwicht  - BLT
Hoofdstuk 4. Chemisch evenwicht - BLT
 
Hoofdstuk 3. Stoichiometrie - BLT
Hoofdstuk 3. Stoichiometrie - BLTHoofdstuk 3. Stoichiometrie - BLT
Hoofdstuk 3. Stoichiometrie - BLT
 
#17 Key
#17 Key#17 Key
#17 Key
 
Energetics hess's law & born haber cycle
Energetics  hess's law & born haber cycleEnergetics  hess's law & born haber cycle
Energetics hess's law & born haber cycle
 
Chapter 3 notes
Chapter 3 notes Chapter 3 notes
Chapter 3 notes
 
CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)
CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)
CHEMICAL THERMODYNAMICS (SPONTANEITY AND ENTROPY)
 
Chemische niet-redox reacties
Chemische niet-redox reactiesChemische niet-redox reacties
Chemische niet-redox reacties
 
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch EquationChem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
Chem 2 - Acid-Base Equilibria X: Buffers and the Henderson-Hasselbalch Equation
 
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLT
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLTHoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLT
Hoofdstuk 5. Concentraties van oplossingen met toepassing op reacties - BLT
 
Hoofdstuk 3. Stoichiometrie - chemie
Hoofdstuk 3. Stoichiometrie - chemieHoofdstuk 3. Stoichiometrie - chemie
Hoofdstuk 3. Stoichiometrie - chemie
 
Communicative Strategies
Communicative StrategiesCommunicative Strategies
Communicative Strategies
 
Ch4 Reactions in Aqueous Solution
Ch4 Reactions in Aqueous SolutionCh4 Reactions in Aqueous Solution
Ch4 Reactions in Aqueous Solution
 
Discount series
Discount seriesDiscount series
Discount series
 
Limiting reagents
Limiting reagentsLimiting reagents
Limiting reagents
 

Similar to SI #4 Key (20)

SI #2 Key
SI #2 KeySI #2 Key
SI #2 Key
 
#18 Key
#18 Key#18 Key
#18 Key
 
Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)Mass balance: Single-phase System (ideal gas and real gases)
Mass balance: Single-phase System (ideal gas and real gases)
 
#17
#17#17
#17
 
Chapter 5 notes
Chapter 5 notesChapter 5 notes
Chapter 5 notes
 
SI #3 Key
SI #3 KeySI #3 Key
SI #3 Key
 
Combined gas law
Combined gas lawCombined gas law
Combined gas law
 
Topic 1 kft 131
Topic 1 kft 131Topic 1 kft 131
Topic 1 kft 131
 
Gases.pptx
Gases.pptxGases.pptx
Gases.pptx
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptx
 
pptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptxpptnotes 14 gas laws glembocki.pptx
pptnotes 14 gas laws glembocki.pptx
 
12 Gas Laws
12 Gas Laws12 Gas Laws
12 Gas Laws
 
Chem Unit6
Chem Unit6Chem Unit6
Chem Unit6
 
Thermodynamics numericl 2016
Thermodynamics numericl 2016Thermodynamics numericl 2016
Thermodynamics numericl 2016
 
Ch5 z5e gases
Ch5 z5e gasesCh5 z5e gases
Ch5 z5e gases
 
Chem Unit7
Chem Unit7Chem Unit7
Chem Unit7
 
propery_solns.ppt
propery_solns.pptpropery_solns.ppt
propery_solns.ppt
 
Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10Chem1020 examples for chapters 8-9-10
Chem1020 examples for chapters 8-9-10
 
ch5.pptx
ch5.pptxch5.pptx
ch5.pptx
 
#18
#18#18
#18
 

More from jessieo387_1412 (20)

#27
#27#27
#27
 
#26 Key
#26 Key#26 Key
#26 Key
 
#26
#26#26
#26
 
#25 Key
#25 Key#25 Key
#25 Key
 
#25
#25#25
#25
 
#24
#24#24
#24
 
#23 Key
#23 Key#23 Key
#23 Key
 
#23
#23#23
#23
 
#20 Key
#20 Key#20 Key
#20 Key
 
#20
#20#20
#20
 
#19
#19#19
#19
 
SI #16 Key
SI #16 KeySI #16 Key
SI #16 Key
 
SI #16
SI #16SI #16
SI #16
 
Practice Test 3
Practice Test 3Practice Test 3
Practice Test 3
 
Si #15 Key
Si #15 KeySi #15 Key
Si #15 Key
 
Si #15
Si #15Si #15
Si #15
 
SI #13 Key
SI #13 KeySI #13 Key
SI #13 Key
 
Si #12 Key
Si #12 KeySi #12 Key
Si #12 Key
 
Si #13
Si #13Si #13
Si #13
 
SI #12
SI #12SI #12
SI #12
 

SI #4 Key

  • 1. KEY GENERAL CHEMISTRY-II (1412) S.I. # 4 1. Define Dalton’s Law in words and equations. In a gaseous mixture the total pressure is given by the sum of partial pressures of each component: Ptotal = P1 + P2 + P3 + … where Pi = ni (RT/V) and (Pi / PT) = (ni / nT) and Pi = Xi Ptotal where Xi is the mole fraction Xi = (ni /ntotal) 2. A mixture containing 2.50 g of each of CH4 (g), C2H4 (g) and C4H10 (g) is contained in a 2.00 L flask at a temperature of 15°C. (a) Calculate the partial pressure of each of the gases in the mixture (b) Calculate the total pressure of the mixture. 2.50 g CH4 (1mol / 16.04 g) = 0.15586 = 0.156 mol CH4 PCH4 = nRT / V  (0.156 mol)(0.0821 atmL)(288K) / 2 L = 1.84 atm 2.50 g C2H4 (1 mol / 28.05 g) = 0.0891 mol C2H4 PC2H4 = nRT/V  (0.0891 mol)(0.821 atmL)(288K) / 2L = 1.05 atm 2.50 g C4H10 (1 mol / 58.12 g) = 0.0430 mol C4H10 PC4H10 = nRT/V  (0.0430 mol)(0.821 atmL)(288K) / 2L = 0.508 atm Ptotal = PCH4 + PC2H4 + PC4H10  1.84 atm + 1.05 atm + 0.508 atm = 3.40 atm 3. A mixture of gases contains 10.25 g of N2, 2.05 g of H2, and 7.63 g of NH3 g. If the total pressure of the mixture is 2.35 atm, what is the partial pressure of each component? nN2 = 10.25 g (1 mol / 28.02 g) = 0.3658 mol nH2 = 2.05 g (1 mol / 2.016g) = 1.0169 mol = 1.02 mol nNH3 = 7.63 g( 1 mol / 17.03 g) = 0.448 mol ntotal = 0.3658 + 1.02 + 0.448 = 1.8307 mol = 1.83 mol PN2 = (nN2 / ntotal)(Ptotal) = (0.3658 / 1.8307)(2.35 atm) = 0.470 atm PH2 = (nPH2 / ntotal)(Ptotal) = (1.0169/1.8307)(2.35 atm) = 1.31 atm PNH3 = (nPNH3 / ntotatl)(Ptotal) = (0.448/1.8307)(2.35 atm) = 0.575 atm 4. Calcium hydride reacts with water to form hydrogen gas. Write a balanced equation and determine how many grams of Calcium hydride are needed to generate 53.5 L of H2 gas if the pressure of H2 is 814 torr at 21°C.
  • 2. KEY CaH2 (s) + 2 H2O (l)  Ca(OH)2 (aq) + 2 H2 (g) nH2 = PH2V / RT  (814 torr/760torr) = 1.07 atm, T = 294K nH2 = 1.07 atm (Kmol/ 0.0821 Latm)(53.5 L/ 294K) = 2.38 mol H2 (2.38 mol H2)(1mol CaH2 / 2 mol H2)(42.10 g CaH2 / 1 mol CaH2) = 50.0 g CaH2 5. What are the mole fractions of each component in a mixture of 5.08 g of O2, 7.17 g of N2, and 1.32 g of H2? nO2 = (5.08 g)(1 mol / 32 g) = 0.159 mol nN2 = (7.17 g)(1 mol / 28.02g) = 0.256 mol nH2 = (1.32 g)(1 mol / 2.016g) = 0.655 mol ntotal = 0.159 + 0.256 + 0.655 = 1.070 mol Xo2 = nO2/nt = 0.159 / 1.07 = 0.149 XN2 = nN2/nt = 0.256 / 1.07 = 0.239 XH2 = nH2/nt = 0.655 / 1.07 = 0.612 6. Hydrogen gas is produced when zinc reacts with sulfuric acid: Zn(s) H2SO4 (aq)  ZnSO4 (aq) + H2 (g) If 159 mL of wet H2 is collected over water at 24°C and a barometric pressure of 738torr, how many grams of Zn have been consumed? Pt = 738 torr = PH2 + PH2O Appendix B, V.P. of water at 24C is 22.38 torr PH2 = (738 torr – 22.38 torr)(1/760 torr) = 0.942 atm nH2 = PH2V / RT = (0.942 atm)(0.159 L) / (0.0821 Latm)(297 K) = 0.006143 = 0.00614 mol H2 (0.006143 mol H2)(1 mol Zn / 1 mol H2)(65.39 g Zn / 1 mol Zn) = 0.402 g Zn