Upcoming SlideShare
×

Chapter 1

435 views
383 views

Published on

McDougal Littell Math Course 3
NYS edition

Published in: Education, Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total views
435
On SlideShare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
6
0
Likes
0
Embeds 0
No embeds

No notes for slide

Chapter 1

1. 1. Chapter 1
2. 2. Frequency Tables and Histograms <ul><li>Frequency Table : a table of data grouped into equal intervals. Does not overlap. </li></ul><ul><li>Histogram- Vertical graph of frequencies. Bars touch. </li></ul><ul><li>Age of teens who visited the mall yesterday: </li></ul><ul><li>14,15,19,13,14,15,18,14,18,17,13,17,13,17,16 </li></ul>15 5 11111 17-18 1 111 111111 Tally 1 19-20 3 15-16 6 13-14 Frequency Ages 13-14 17-18 15-16 19-20
3. 3. How to make a frequency table: <ul><li>1. Choose intervals of equal size that include all data. </li></ul><ul><li>2. Tally the data at each interval. </li></ul><ul><li>3. Write the frequency for each interval. </li></ul><ul><li>4. Count to be sure you included all data </li></ul>
4. 4. Collect data about the number of pets each person in the class has. <ul><li>Make a frequency table to show the amount of pets </li></ul><ul><li>each student in the class has: </li></ul><ul><li>List the numbers first: </li></ul>Tally Frequency # of Pets
5. 5. How to Draw a Histogram <ul><li>Title the graph. </li></ul><ul><li>Draw and label the horizontal and vertical axes. (start the vertical scale at zero and use equal increments) </li></ul><ul><li>Draw a bar to represent the frequency for each interval. Make sure they are touching </li></ul>
6. 6. Create another frequency table <ul><li>The data shows the heights in meters, of some of the tallest roller coasters in the world: </li></ul><ul><li>66.4, 94.5, 68.3, 115, 62.5, 97, 66.4, 126.5, 63.4, 74.7, 63.4, 70.1, 66.4, 64.9, 63.7, 79, 63.4, 63.1, 62.5, 61.9, 71.6 </li></ul>Tally Frequency Height (M) Tally Frequency Height (M)
7. 7. Order of Operations <ul><li>P arenthesis </li></ul><ul><li>E xponents </li></ul><ul><li>M ultiplication /D ivision </li></ul><ul><li>A ddition /S ubtraction </li></ul><ul><li>“ PEMDAS” </li></ul>
8. 8. Expressions <ul><li>Variable- letter that stands for a number </li></ul><ul><li>Expressions – consist of numbers, variables and operations. (NO EQUAL SIGN) </li></ul>
9. 9. Evaluate the expression for the given values: <ul><li>3y – 10, y = 7 </li></ul><ul><li>2(x + 7), x = 4 </li></ul><ul><li>3) m ÷ 2, m =12 </li></ul><ul><li>4) 5 * r, r = 3 </li></ul>
10. 10. Do Now: 9/18 <ul><li>Evaluate the expression when x=3 and y=5 </li></ul><ul><li>3x +2y </li></ul><ul><li>xy </li></ul><ul><li>5x ÷ y </li></ul><ul><li>Translate the expressions and Equations: </li></ul><ul><li>4. A number less than 38 is 14 </li></ul><ul><li>5. The quotient of 21 and a number </li></ul>
11. 11. Equations: <ul><li>Equation – a mathematical sentence formed by placing an equal sign between two expressions </li></ul>
12. 12. Solving Equations <ul><li>Use inverse operations to solve </li></ul><ul><ul><ul><li>Addition/Subtraction </li></ul></ul></ul><ul><ul><ul><ul><li>+/- </li></ul></ul></ul></ul><ul><ul><ul><li>Multiplication/Division </li></ul></ul></ul><ul><ul><ul><li>*/ ÷ </li></ul></ul></ul><ul><ul><ul><li>Squared/Square root </li></ul></ul></ul><ul><ul><ul><ul><li>x 2 / √ </li></ul></ul></ul></ul>
13. 13. Examples: <ul><li>10 + n = 23 </li></ul><ul><li>7x = 42 </li></ul><ul><li>R ÷ 3 = 8 </li></ul><ul><li>N -15 = 7 </li></ul><ul><li>3= t ÷ 5 </li></ul>
14. 14. Do Now 9/21/09 Solve and check: <ul><li>13 = r + 9 </li></ul><ul><li>4x = 12 </li></ul><ul><li>15 = m </li></ul><ul><ul><ul><li>8 </li></ul></ul></ul><ul><li>r – 8 = 24 </li></ul>
15. 15. Do Now 9/21/09 <ul><li>Tell whether the value of the variable is a solution of the equation: </li></ul><ul><li>5a = 40; a= 9 </li></ul><ul><li>42 - b=26; b=16 </li></ul><ul><li>Solve and check the equations using inverse operations: </li></ul><ul><li>3. G + 4 = 31 </li></ul><ul><li>4. B ÷ 3 = 22 </li></ul><ul><li>5. The level of water in a pond rose 10 inches in one week. Over the first three days, the pond rose 7 inches. Write an equation to find out how much the pond rose the last four days of the week. Then solve the equation. </li></ul>
16. 16. Solving equations using formulas 9/21 Triangle Rectangle Square Area Perimeter
17. 17. Distance Formula <ul><li>Formula: D=RT </li></ul><ul><li>1) A bicycle is moving at a rate of 10 feet per second. How far does the bicycle travel in 60 seconds? </li></ul>D= Distance R= Rate T= Time
18. 18. Applying Formulas: <ul><li>2) A duck is flying at a rate of 55 feet per second. How far does the duck travel in 6 seconds? </li></ul><ul><li>3) How long does it take an airplane to travel 1350 miles at a rate of 450 miles per hour? </li></ul><ul><li>4) Find the Perimeter and Area of the shapes: </li></ul>9 cm 3 cm 4 ft 10 ft
19. 19. Do Now 9/22/09 <ul><li>Find the perimeter and area: </li></ul><ul><li>12 in </li></ul><ul><li>4 in </li></ul><ul><li>Use the distance formula to find the unknown values: </li></ul><ul><li>2) d= 20 ft, r= 2 ft/sec, t=? </li></ul><ul><li>3) d= ___, r= . 25m/min, t= 3min </li></ul>
20. 20. Word Problem Attack 9/22 <ul><li>Read (From beg to end) </li></ul><ul><li>Read again and underline important information </li></ul><ul><li>Decide what the question is asking </li></ul><ul><li>Think about possible ways to solve </li></ul><ul><li>Pick one and Solve </li></ul><ul><li>Look back/check (re-read problem) </li></ul>
21. 21. <ul><li>It takes Robin 3 hours to mow the lawn and 1 hour to pull the weeds in her garden. She does both 4 times a month. How much time must she spend on yard work each month? </li></ul><ul><li>You purchase 9 concert tickets on the internet. The tickets are \$22 each. You have to pay a handling fee of \$3 per ticket and a shipping fee of \$5 for the entire order. What is the total cost of the order? </li></ul>
22. 22. TB p41 15, 24-27 *33* <ul><li>15.a) how many people ride in an hour </li></ul><ul><li> 5 cars * 4 passengers </li></ul><ul><li>b) 900 </li></ul><ul><li>5*4 </li></ul><ul><li>c) 45 * 4 * 5 = 180 *5 = 900 people </li></ul><ul><li>24) </li></ul>= 900 20 =45 trains