Your SlideShare is downloading. ×
0
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Nuclear Chemistry Powerpoint
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Nuclear Chemistry Powerpoint

12,097

Published on

From Sir Paz

From Sir Paz

Published in: Technology, Business
0 Comments
2 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total Views
12,097
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
381
Comments
0
Likes
2
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Nuclear Chemistry<br />
  • 2. Radioactivity – spontaneous emission of particles and or radiation<br />(proposed by Marie Curie)<br /><ul><li>Three types of ray are produced by the decay, or breakdown, of radioactive</li></ul> substances<br /> A. Alpha rays ( α ) – consist of positively charged particles called alpha particles and therefore are deflected by the positively charged plate.<br /> B. Beta rays ( β ) – or beta particles – are electrons and deflected by negatively charged plate<br /> C. Gamma rays ( γ ) – have no charged and are not affected by an external electric field or magnetic field<br />
  • 3. Lead block<br />Radioactive substance<br />–<br />a<br />g<br />b<br />+<br />
  • 4. Lead block<br />–<br />+<br />
  • 5. Lead block<br />Radioactive substance<br />–<br />a<br />+<br />
  • 6. Lead block<br />Radioactive substance<br />–<br />b<br />+<br />
  • 7. Lead block<br />g<br />Radioactive substance<br />–<br />+<br />
  • 8. Lead block<br />Radioactive substance<br />–<br />a<br />g<br />b<br />+<br />
  • 9.
  • 10. A<br />X<br />Mass Number<br />Element Symbol<br />Z<br />Atomic Number<br />a particle<br />proton<br />neutron<br />electron<br />positron<br />or<br />or<br />1p<br />1H<br />0b<br />0e<br />or<br />1<br />1<br />+1<br />1n<br />0e<br />+1<br />0b<br />0<br />-1<br />-1<br />4a<br />4He<br />or<br />2<br />2<br />Atomic number (Z) = number of protons in nucleus<br /> Mass number (A) = number of protons + number of neutrons <br /> = atomic number (Z) + number of neutrons<br />A<br />1<br />1<br />0<br />0<br />4<br />1<br />0<br />-1<br />+1<br />2<br />Z<br />23.1<br />
  • 11. +<br />+<br />+ 2<br />+<br />+<br />+ 2<br />1n<br />1n<br />1n<br />1n<br />96<br />96<br />0<br />0<br />0<br />0<br />Rb<br />Rb<br />37<br />37<br />235<br />138<br />235<br />138<br />U<br />Cs<br />U<br />Cs<br />92<br />55<br />92<br />55<br />Balancing Nuclear Equations<br />Conserve mass number (A). <br />The sum of protons plus neutrons in the products must equal the sum of protons plus neutrons in the reactants.<br />235 + 1 = 138 + 96 + 2x1<br />Conserve atomic number (Z) or nuclear charge. <br />The sum of nuclear charges in the products must equal the sum of nuclear charges in the reactants.<br />92 + 0 = 55 + 37 + 2x0<br />23.1<br />
  • 12. or<br />alpha particle - <br />212Po 4He + AX<br />2<br />Z<br />84<br />212Po 4He + 208Pb<br />2<br />82<br />84<br />4a<br />4He<br />2<br />2<br />212Po decays by alpha emission. Write the balanced nuclear equation for the decay of 212Po.<br />212 = 4 + A<br />A = 208<br />84 = 2 + Z<br />Z = 82<br />23.1<br />
  • 13. 23.1<br />
  • 14. I. Nuclear Stability and Radioactive Decay<br />
  • 15. X<br />Y<br />n/p too large<br />beta decay<br />n/p too small<br />positron decay or electron capture<br />23.2<br />
  • 16.
  • 17.
  • 18. Predicting the mode of decay<br />High n/p ratio (too many neutrons; lie above band of stability) --- undergoes beta decay <br /> Low n/p ratio (neutron poor; lie below band of stability) --- positron decay or electron capture<br />Heavy nuclides ( Z &amp;gt; 83) --- alpha decay<br />
  • 19. II. Nuclear Transmutations<br /><ul><li>Nuclear reactions that are induced in a way that nucleus is struck by a neutron or by another nucleus (nuclear bombardment) </li></ul>Positive ion bombardment<br /> - alpha particle is the most commonly used positive ion<br />- uses accelerators<br />Examples:<br />147 N + 42 He -&gt; 178 O + 11H<br /> 94Be + 42 He -&gt; 126 C + 10n<br />Neutron bombardment<br /> - neutron is bombarded to a nucleus to form a new nucleus<br />- most commonly used in the transmutation to form synthetic isotopes because neutron are neutral, they are not repelled by nucleus<br />Example:<br /> 5826 Fe + 10 n -&gt; 5926 Fe -&gt; 5927 Co + 0-1 e<br />
  • 20. 5<br /> +<br /> +<br />+<br />+<br />+ 0-1 e<br />+<br />+<br />4He<br />1n<br />1n<br />0e<br />14N<br />1n<br />2<br />0<br />-1<br />7<br />0<br />0<br />239<br />242<br />238<br />239<br />239<br />239<br />238<br />247<br />Pu<br />Cm<br />U<br />U<br />Pu<br />Np<br />U<br />Es<br />94<br />96<br />92<br />92<br />94<br />93<br />92<br />99<br />Transuranium elements<br /><ul><li>Element with atomic numbers above 92
  • 21. Produced using artificial transmutations, either by:</li></ul>alpha bombardment<br />neutron bombardment<br />bombardment from other nuclei<br />Examples:<br />a. <br />b. <br />c. <br />
  • 22. III. Nuclear Energy<br />Recall:<br />Nucleus is composed of proton and neutron<br />Then, is the mass of an atom equal to the total mass of all the proton plus the total mass of all the neutron?<br />Example for a He atom:<br />Total mass of the subatomic particles<br />= mass of 2 p+ + mass of 2n0<br />= 2 ( 1.00728 amu ) + 2 (1.00867 amu)<br />= 4.03190 amu<br />And atomic weight of He-4 is 4.00150<br />Why does the mass differ if the atomic mass = number of protons + number of neutrons?<br />
  • 23. Mass defect<br />-mass difference due to the release of energy<br />-this mass can be calculated using Einstein’s equation E =mc2<br />2 11 H + 2 20 H -&gt; 42 He + energy<br />Therefore:<br />-energy is released upon the formation of a nucleus from the constituent protons and neutrons<br />-the nucleus is lower in energy than the component parts.<br />-The energy released is a measure of the stability of the nucleus. Taking the reverse of the equation:<br /> 42He + energy -&gt; 2 11 H + 2 20 n<br />
  • 24. Therefore,<br />-energy is released to break up the nucleus into its component parts. This is called the nuclear binding energy.<br />-the higher the binding energy, the stable the nuclei.<br />-isotopes with high binding energy and most stable are those in the mass range 50-60.<br />
  • 25. Nuclear binding energy per nucleon vs Mass number<br />nuclear binding energy<br />nucleon<br />nuclear stability<br />23.2<br />
  • 26. -The plot shows the use of nuclear reactions as source of energy.<br />-energy is released in a process which goes from a higher energy state (less stable, low binding energy) to a low energy state (more stable, high binding energy).<br />-Using the plot, there are two ways in which energy can be released in nuclear reactions:<br />a. Fission – splitting of a heavy nucleus into smaller nuclei<br />b. Fusion – combining of two light nuclei to form a heavier, more stable nucleus.<br />
  • 27. BE + 19F 91p + 101n<br />0<br />9<br />1<br />binding energy per nucleon = <br />binding energy<br />number of nucleons<br />2.37 x 10-11 J<br />19 nucleons<br />= <br />Nuclear binding energy (BE) is the energy required to break up a nucleus into its component protons and neutrons.<br />E = mc2<br />BE = 9 x (p mass) + 10 x (n mass) – 19F mass<br />BE (amu) = 9 x 1.007825 + 10 x 1.008665 – 18.9984<br />BE = 0.1587 amu<br />1 amu = 1.49 x 10-10 J<br />BE = 2.37 x 10-11J<br />= 1.25 x 10-12 J<br />23.2<br />
  • 28. 23.3<br />
  • 29. 14N + 1n 14C + 1H<br />0<br />7<br />1<br />6<br />14C 14N + 0b + n<br />6<br />7<br />-1<br />238U 206Pb + 8 4a + 6 0b<br />92<br />-1<br />82<br />2<br />Radiocarbon Dating<br />t½ = 5730 years<br />Uranium-238 Dating<br />t½ = 4.51 x 109 years<br />23.3<br />
  • 30. 14N + 4a17O + 1p<br />7<br />2<br />1<br />8<br />27Al + 4a30P + 1n<br />13<br />2<br />0<br />15<br />14N + 1p 11C + 4a<br />7<br />1<br />2<br />6<br />Cyclotron Particle Accelerator<br />Nuclear Transmutation<br />23.4<br />
  • 31. Nuclear Transmutation<br />23.4<br />
  • 32. 235U + 1n 90Sr + 143Xe + 31n + Energy<br />38<br />0<br />0<br />54<br />92<br />Nuclear Fission<br />Energy = [mass 235U + mass n – (mass 90Sr + mass 143Xe + 3 x mass n )] x c2<br />Energy = 3.3 x 10-11J per 235U<br />= 2.0 x 1013 J per mole 235U<br />Combustion of 1 ton of coal = 5 x 107 J<br />23.5<br />
  • 33. 235U + 1n 90Sr + 143Xe + 31n + Energy<br />38<br />0<br />0<br />54<br />92<br />Nuclear Fission<br />Representative fission reaction<br />23.5<br />
  • 34. Non-critical<br />Critical<br />Nuclear Fission<br />Nuclear chain reaction is a self-sustaining sequence of nuclear fission reactions.<br />The minimum mass of fissionable material required to generate a self-sustaining nuclear chain reaction is the critical mass.<br />23.5<br />
  • 35. Nuclear Fission<br />Schematic diagram of a nuclear fission reactor<br />23.5<br />
  • 36. 35,000 tons SO2<br />4.5 x 106 tons CO2<br />70 ft3 vitrified waste<br />3.5 x 106 <br />ft3 ash<br />1,000 MW coal-fired<br />power plant<br />1,000 MW nuclear<br />power plant<br />Nuclear Fission<br />Annual Waste Production<br />23.5<br />
  • 37. Nuclear Fission<br />Hazards of the radioactivities in spent fuel compared to uranium ore<br />23.5<br />From “Science, Society and America’s Nuclear Waste,” DOE/RW-0361 TG<br />
  • 38. 2H + 2H 3H + 1H<br />1<br />1<br />1<br />1<br />2H + 3H 4He + 1n<br />2<br />1<br />0<br />1<br />6Li + 2H 2 4He<br />2<br />3<br />1<br />Nuclear Fusion<br />Fusion Reaction<br />Energy Released<br />6.3 x 10-13 J<br />2.8 x 10-12 J<br />3.6 x 10-12 J<br />Tokamak magnetic plasma confinement<br />23.6<br />
  • 39. Radioisotopes in Medicine<br /><ul><li>1 out of every 3 hospital patients will undergo a nuclear medicine procedure
  • 40. 24Na, t½ = 14.8 hr, b emitter, blood-flow tracer
  • 41. 131I, t½ = 14.8 hr, b emitter, thyroid gland activity
  • 42. 123I, t½ = 13.3 hr, g-ray emitter, brain imaging
  • 43. 18F, t½ = 1.8 hr, b+ emitter, positron emission tomography
  • 44. 99mTc, t½ = 6 hr, g-ray emitter, imaging agent</li></ul>Brain images with 123I-labeled compound<br />23.7<br />
  • 45. Geiger-Müller Counter<br />23.7<br />
  • 46. Biological Effects of Radiation<br />Radiation absorbed dose (rad)<br />1 rad = 1 x 10-5 J/g of material<br />Roentgen equivalent for man (rem)<br />1 rem = 1 rad x Q<br />Quality Factor<br />g-ray = 1<br />b = 1<br />a = 20<br />23.8<br />
  • 47. Chemistry In Action: Food Irradiation<br />

×