Your SlideShare is downloading. ×
0
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Jan2010 Triumf2
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Jan2010 Triumf2

182

Published on

Published in: Technology, Business
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
182
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Transcript

    • 1. Our approach to EDM Earth’s field New physics 10-16 (μnHo/E) Statistical < 10-27 e·cm n EDM e EDM ✦ Increase UCN density* 10-18 ∼ ∼ 10-24 Systematic < 10-27 e·cm EDM 10-25 ✦ Buffer gas nuclear spin upper limit 10-26 comagnetometer* statistical 1.5×10-26 ✦ Spherical coil* 10-27 systematic 0.7×10-26 10-28 ✦ R2 ×1/10* e·cm ✦ Meissner shield * our work Japanese collaborators Y. Masuda, S.C. Jeong, Y. Watanabe, T. Adachi (KEK) K. Asahi (TIT) K. Matsuta, M. Mihara, R. Matsumiya, D. Nishimura (Osaka) K. Hatanaka , I. Tanihata (RCNP)
    • 2. EDM (dn) measurement n spin s Ho E 1 μT 10 kV/cm UCN bottle
    • 3. EDM (dn) measurement n spin s 1st RF pulse γH1t = π/2 Ho E 1 μT 10 kV/cm UCN bottle
    • 4. EDM (dn) measurement n spin s ωotc RF phase ωotc precession phase ωo: 2μnHo ± 2dnE Ho E 1 μT 10 kV t : precession time /cm c Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s UCN bottle
    • 5. EDM (dn) measurement n spin s 2nd π/2 ωtc RF phase RF pulse ωotc precession phase for neutron ωo: 2μnHo ± 2dnE Ho E polarimetry 1 μT 10 kV t : precession time /cm c (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s UCN bottle Pncos(ω-ωo)tc RF frequency ω
    • 6. EDM (dn) measurement n spin s 2nd π/2 ωtc RF phase RF pulse ωotc precession phase for neutron ωo: 2μnHo ± 2dnE Ho E polarimetry 1 μT 10 kV t : precession time /cm c (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s UCN bottle Pncos(ω-ωo)tc E reversal for extraction of dn RF frequency ω δdsta = h/{2PnEtc√N} Pn : UCN polarization N : number of UCN
    • 7. tc= Ramsey resonance t 100ms t Effect of Pncos(ω-ωo)tc two coherent RF pulses %!!! (ω-ωo)tc = -5π -π π 5π 31,3,:6.1.0,-/66501,.4,"µ;! )*+,-./012,34156,30378956! -3π 3π $!!! #!!! "!!! -4π -2π 0 2π 4π !! &!!! &&!! '!!! '&!! (!!! <65=/50-8,>?9@!
    • 8. Systematic error of ILL EDM 1st π/2 2nd π/2 RF pulse RF pulse ωtc RF phase ωotc precession phase n spin s Ho E 1 μT 10 kV /cm (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s EDM cell
    • 9. Systematic error of ILL EDM 1st π/2 2nd π/2 RF pulse RF pulse ωtc RF phase ωotc precession phase n spin s Ho E 1 μT 10 kV /cm (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s ∂Ho/∂z = 1 nT/m EDM cell
    • 10. Systematic error of ILL EDM 1st π/2 2nd π/2 RF pulse RF pulse ωtc RF phase ωotc precession phase n spin s Ho E 1 μT 10 kV /cm (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s ∂Ho/∂z = 1 nT/m E×v/c2 Phase shift arises from transverse fields, (∂Ho/∂z)R/2 andEDM cell z E Ho y UCN spin x
    • 11. Systematic error of ILL EDM 1st π/2 2nd π/2 RF pulse RF pulse ωtc RF phase ωotc precession phase n spin s Ho E 1 μT 10 kV /cm (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s ∂Ho/∂z = 1 nT/m E×v/c2 Phase shift arises from transverse fields, (∂Ho/∂z)R/2 andEDM cell z E Ho y vxyE/c2 γ(vxyE/c2)τ τ = 2R/vxy vxy << 2π/ω0 UCN spin x
    • 12. Systematic error of ILL EDM 1st π/2 2nd π/2 RF pulse RF pulse ωtc RF phase ωotc precession phase n spin s Ho E 1 μT 10 kV /cm (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s ∂Ho/∂z = 1 nT/m E×v/c2 Phase shift arises from transverse fields, (∂Ho/∂z)R/2 andEDM cell z E Ho y vxyE/c2 γ(∂H0z/∂z)(R/2)τ × γ(vxyE/c2)τ τ = 2R/vxy (∂H0z/∂z)(R/2) vxy << 2π/ω0 UCN spin x
    • 13. Systematic error of ILL EDM 1st π/2 2nd π/2 RF pulse RF pulse ωtc RF phase ωotc precession phase n spin s Ho E 1 μT 10 kV /cm (ω-ωo)tc Neutron precession S = exp{i(μ·H0 + dn·E)/h·t} μ, dn ∝ s ∂Ho/∂z = 1 nT/m E×v/c2 Phase shift arises from transverse fields, (∂Ho/∂z)R/2 andEDM cell z E Motion induced phase shift Ho y in cylindrically symmetric Ho vxyE/c2 γ(∂H0z/∂z)(R/2)τ × Δω∝ γ(vxyE/c2)τ γ(∂H0z/∂z)(R/2)τ)·γ(vxyE/c2)τ /τ τ = 2R/vxy = γ2(∂H0z/∂z)(R2/c2)·E (∂H0z/∂z)(R/2) vxy << 2π/ω0 x false EDM UCN spin
    • 14. Motion induced systematic error Geometric Phase Effect (GPE) Pendlebury et al, Phys. Rev A70(2004), Golub and Lamoreaux, Phys. Rev A71(2005) For cylindrical symmetric field for for UCN atom dafn = -h/4 (∂H0z/∂z)/H0z2 vxy2/c2 = 1×10-27 e·cm dafHgn = h/8 ⎮γnγHg⎮ (∂H0z/∂z) R2/c2 = 5×10-26 e·cm for 199Hg at H0z = 1 μT, ∂H0z/∂z = 1 nT/m and R = 0.5 m
    • 15. Nuclear spin magnetometer dafNn = - /4·γn JNγN (∂H0z/∂z)·R2/c2 = 5×10-26 e·cm for 199Hg, ∂H0z/∂z = 1 nT/m, R = 0.5 m σa at ρ for Isotope JN g (γN=gμN/h) 2200 m/s τ=1/(σaρv)=500 s n 1/2 -1.913 199Hg 1/2 0.5026 2150 b (3x1010/cc, photon) (ILL) 3He 1/2 -2.128 5333 b 1012/cc, SQUID (SNS) 129Xe 1/2 -0.777 21 b 2.5x1014/cc, SQUID (Ours) 133Cs 7/2 2.579 29 b (PSI)
    • 16. Our idea for the suppression of the false EDM
    • 17. Our idea for the suppression of the false EDM R= Ho(UCN)/Ho(199Hg) = 1±∆h<∂H0z/∂z>/H0z ∆h = hav(UCN) - hav(199Hg) = 3 mm Pendlebury et al
    • 18. Our idea for the suppression of the false EDM R= Ho(UCN)/Ho(199Hg) = 1±∆h<∂H0z/∂z>/H0z ∆h = hav(UCN) - hav(199Hg) = 3 mm Pendlebury et al
    • 19. Our idea for the suppression of the false EDM R= Ho(UCN)/Ho(199Hg) = 1±∆h<∂H0z/∂z>/H0z ∆h = hav(UCN) - hav(199Hg) = 3 mm Pendlebury et al Earth’s rotation has serious effect because sign of γ199Hg is opposite to γn. drot = 2.5×10-26 e·cm, Golub Sign of γ129Xe is the same as γn. 129Xe is not serious.
    • 20. Our idea for the suppression of the false EDM R= Ho(UCN)/Ho(199Hg) = 1±∆h<∂H0z/∂z>/H0z ∆h = hav(UCN) - hav(199Hg) = 3 mm Suppression by atomic collision Pendlebury et al 199Hg-4He Earth’s rotation has serious effect because sign of γ199Hg is opposite to γn. drot = 2.5×10-26 e·cm, Golub Sign of γ129Xe is the same as γn. 129Xe is not serious.
    • 21. Our idea for the suppression of the false EDM R= Ho(UCN)/Ho(199Hg) = 1±∆h<∂H0z/∂z>/H0z ∆h = hav(UCN) - hav(199Hg) = 3 mm Suppression by atomic collision Pendlebury et al 129Xe-129Xe 199Hg-4He 0.0005 Earth’s rotation has serious effect because sign of γ199Hg is opposite to γn. 129Xe drot = 2.5×10-26 e·cm, Golub λ = 1/nσ << 0.05 cm Sign of γ129Xe is the same as γn. n = 2.5×1014/cc, σXe-Xe >> 838Å2 129Xe is not serious.
    • 22. 129Xe-SQUID (or SERF) magnetometer Dipole field B = μ0/4π (3r(μ·r) - μr2)/r5 = 0.98×10-13 T at r = 0.1 m 129Xe μ = -3.9239×10-27 J/T n = 2.5×1017/liter μ S = 0.01 m2 Φ = 0.47 Φ0 cos(ω0t) Tm2 Φ0 = h/2e = 2.067833667×10-15 Tm2
    • 23. 129Xe-SQUID (or SERF) magnetometer Dipole field B = μ0/4π (3r(μ·r) - μr2)/r5 = 0.98×10-13 T at r = 0.1 m 129Xe SQUID Tristan Tech. BMS-L LTS μ = -3.9239×10-27 J/T sensitivity 1fT, n = 2.5×1017/liter 5μΦ0/√Hz (or spin-exchange μ relaxation free SERF Cs magnetometer) S = 0.01 m2 Φ = 0.47 Φ0 cos(ω0t) Tm2 Φ0 = h/2e = 2.067833667×10-15 Tm2
    • 24. Discharge problem Townsend discharge is triggered by photoelectric current I0 avalanche effect I = I0 eαnd αn : first Townsend ionization coefficient d : distance between the plate Electric grow discharge P = 0.1 ~ 1 torr : N = 3.5×(1016 ~ 1015)/cc Grow discharge disappears at P = 0.01 torr : N = 3.5×1014/cc
    • 25. Discharge problem 129Xe Ne Magneto Optical Trap, λ = 1/nσ << 0.05 cm Phys.Rev.A78(2008)042712, n = 2.5×1014/cc σNe-He 164Å2, σNe-Ne 500Å2, σXe-Xe >> 838Å2 σNe-Ar 838Å2 Townsend discharge is triggered by photoelectric current I0 avalanche effect I = I0 eαnd αn : first Townsend ionization coefficient d : distance between the plate Electric grow discharge P = 0.1 ~ 1 torr : N = 3.5×(1016 ~ 1015)/cc Grow discharge disappears at P = 0.01 torr : N = 3.5×1014/cc
    • 26. Thermoelectron ? Work function Electron emission from electrode I(T) ∝ T2 e-W/kT kT = 25.8×10-3 eV at 300K = 14.2×10-3 eV at 165K W ~4 eV I(165K)/I(300K) = 0.3×e-127 = 3×10-56 low temperature may suppress discharge
    • 27. We built a spherical coil for Ho coil 2008 z r0 d three dimensional dipole dz ~ (Ni/6)(r0/r)2cos i divB = 0 r0 uniform z-directed field ~ -(Ni/3)(r/r0)cos
    • 28. We built a spherical coil for Ho coil 2008 z r0 d three dimensional dipole dz ~ (Ni/6)(r0/r)2cos i divB = 0 r0 uniform z-directed field ~ -(Ni/3)(r/r0)cos place in a superconductor shielding
    • 29. We have built a Ramsey resonance apparatus Spherical coil 2008~2009 Door valve Spin flipper Polarizer/analyzer Rotary valve UCN detector
    • 30. We have built a Ramsey resonance apparatus Spherical coil 2008~2009 Door valve π/2 RF coil Spin flipper Polarizer/analyzer Rotary valve EDM cell UCN detector
    • 31. High voltage will be applied in FY2010 +250 kV -250 kV
    • 32. Comparison with world’s EDM magnetic EDM cell H0 field magnetometer shielding small spherical coil μ metal 129Xe buffer gas Ours room temperature cylindrical superconductor co-magnetometer Sussex large solenoid μ metal n at E=0 RAL He-II cylindrical superconductor magnetometer large cosθ coil μ metal 3He SNS He-II non cylindrical superconductor co-magnetometer large cosθ coil Cs multi- PSI room μ metal magnetometer temperature non cylindrical

    ×