• Save
NRAD - ANS 2012
Upcoming SlideShare
Loading in...5
×
 

NRAD - ANS 2012

on

  • 568 views

Additional Benchmark Evaluation of the NRAD Reactor LEU Core Conversion

Additional Benchmark Evaluation of the NRAD Reactor LEU Core Conversion

Statistics

Views

Total Views
568
Views on SlideShare
568
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

NRAD - ANS 2012 NRAD - ANS 2012 Presentation Transcript

  • Additional Benchmark Evaluation ofthe NRAD Reactor LEU CoreConversionJohn D. BessMargaret A. MarshallIdaho National Laboratory 2012 ANS Annual Meeting Chicago, Illinois June 24-28, 2012 This paper was prepared at Idaho National Laboratory for the U.S.Department of Energy under Contract Number (DE-AC07-05ID14517)
  • Neutron Radiography (NRAD) Reactor 250 kW TRIGA Mark II Linear channel Safety channel 2 Conversion-type North beam tube Located at INL G North beam aperture N  Former PRNC 2-MW reactor I H Empty grid J 60 U(30/20)ErZrH rods location Graphite  Formerly HEU FLIP fuel A reflector assembly 12 graphite reflectors B C East 3 control rods D beam tube 2 neutron radiography E East beam beam lines F aperture Empty positions for in- L 1 2 3 4 5 6 core experimentation K N  Part of Hot Fuels M Safety channel 1 Log channel Examination Facility (HFEF) NW NE Control rod SW SE Fuel cluster assembly Neutron source (AmBe) Standard fuel element Irradiation positions 10-GA50002-04-3 2
  • TRIGA Fuel Conversion HEU LEU Nominal (FLIP) (30/20) Design Data Core Configuration Operational Fuel Fuel Number of Fuel Elements 60Number of Fuel Rods 60 60 Total Mass (g) 2506.5 ± 3.4 Uranium Mass (g) 749.9 ± 2.7Fuel Type UErZrH UErZrH 235U Mass (g) 148.0 ± 0.6Uranium Enrichment % 70 19.75 235U Enrichment (%) 19.74 ± 0.02Uranium Density wt-% 8.42 30 U Mass Content (wt.%) 29.92 ± 0.09Erbium wt-% 1.48 0.90 H/Zr Ratio 1.58 ± 0.01Zirconium Rod OD, mm 5.715 5.715 Er Content (wt.%) 0.90 ± 0.02 C Content (wt.%) 0.30 ± 0.02Fuel Meat OD, mm 34.823 34.823 Fuel Element Length (mm) 380.2 ± 0.4Fuel Meat L, mm 381 381 Fuel Element Diameter (mm) 34.805 ± 0.003Clad Thickness, mm 0.508 0.508 Cladding Inner Diameter (mm) 34.894 ± 0.005Clad Material 304 SS 304 SS Fuel-Clad Difference (mm) 0.089 ± 0.005 3
  • Current Benchmark: NRAD-FUND-RESR-001 60-fuel-rod critical configuration completed Available in March 2011 edition of IRPhEP Handbook http://irphep.inl.gov/ irphep@inl.gov Also available in Sept. 2011 edition of ICSBEP Handbook  Useful for storage, handling, and transportation of UZrH 4
  • International Handbook of Evaluated ReactorPhysics Benchmark ExperimentsMarch 2012 Edition 16 Contributing Countries Data from 56 Experimental Series performed at 32 Reactor Facilities Data from 52 out of the 56 series are published as approved benchmarks Data from 4 out of the 56 series are published in DRAFT form 5
  • Summary of the Benchmark Process 6
  • NRAD LEU TRIGA Start-Up Tests March 9 – June 7, 2010  Calorimetric power calibrations Fuel loading approach  100, 200, 250 kW to critical  Full power operation Initial critical  ER  56 fuel rods  Graphite reflector  Rod worths, ER, SDM movements Operational core  Dry tube worth  60 fuel rods  Radiography beam  Critical, rod worths, ER, characterization SDM performed after start- up tests were completed 7
  • Simplified Benchmark Model – 60 Rods 23.095 Fully 56 Rods inserted control rod Water North beam tube (void) 1.905 13.97 Fully withdrawn control rod S2 East beam 38.1 16.51 tube (void) Fuel 13.97 C L midplane Graphite108.73751 65.72251 Fuel Beam reflector rod filter tube S1 block R D 90 0.123825 5.08 Water Fuel rod S1 Shim 1 control rod 19.92 S2 Shim 2 control rod R Regulating control rod Dimensions in cm Graphite reflector block 10-GA50002-145-6 Dimensions in cm 10-GA50002-145-9 8
  • Update to Current Benchmark Model Fuel batch data  Zr data from Y-12, from CERCA CERCA, and EAG Updated 234U, 236U, measurements and EBC in fuel Significant Negligible reduction in Hf computational bias content in model 50% Reduction in o +0.1 %Δkeff associated 100% reduction in uncertainties Hf uncertainty 9
  • Highlights of Benchmark Evaluation Water Saturation of  Computational Bias of Graphite Blocks ~1%  Other TRIGAs with same Largest Single problem Uncertainty o Musashi Mark II (100 kW) – MCNP+ENDF/B-V ±0.0025 Dk (56 rods) o Slovenia Mark II (250 kW) – MCNP+ENDF/B-VII ±0.0021 Dk (60 rods)  Bias variation o Quantity of fuel o Cross Section Data Total Experimental o Monte Carlo Code – KENO vs MCNP Uncertainty  Bias increases with ±0.0028 Dk (56 rods) core size ±0.0024 Dk (60 rods)  ~5¢ per fuel rod 10
  • Effect of Graphite Water Saturation60-Fuel-Element Core 11
  • Criticality Results – 56 Rods Experiment keff + Simplification Bias = Benchmark keff 1.0000 + 0.0014 = 1.0014 ± 0.0029 (±$0.39)Analysis Calculated Bias Neutron Library Code keff ± σ Worth ($) ENDF/B-VII.0 1.00906 ± 0.00007 0.76 1.02 JEFF-3.1 1.00712 ± 0.00007 0.57 0.76MCNP5 JENDL-3.3 1.00616 ± 0.00007 0.48 0.63 ENDF/B-VI.8 1.00437 ± 0.00007 0.30 0.40 ENDF/B-VII.0 1.00901 ± 0.00007 0.76 1.01 (238-group)KENO-VI ENDF/B-VII.0* 1.00898 ± 0.00008 0.76 1.01 (continuous energy)SERPENT ENDF/B-VII.0 1.00912 ± 0.00008 0.77 1.03 12
  • Criticality Results – 60 Rods Experiment keff + Simplification Bias = Benchmark keff 1.0000 + 0.0010 = 1.0010 ± 0.0025 (±$0.34)Analysis Calculated Bias Neutron Library Code keff ± σ Worth ($) ENDF/B-VII.0 1.01029 ± 0.00007 0.93 1.24 JEFF-3.1 1.00822 ± 0.00007 0.72 0.96MCNP5 JENDL-3.3 1.00731 ± 0.00007 0.63 0.84 ENDF/B-VI.8 1.00558 ± 0.00007 0.46 0.61 ENDF/B-VII.0 1.01041 ± 0.00007 0.94 1.25 (238-group)KENO-VI ENDF/B-VII.0* 1.00933 ± 0.00008 0.83 1.11 (continuous energy)SERPENT ENDF/B-VII.0 1.01032 ± 0.00008 0.93 1.24 13
  • Reactivity Effects Measurements Rod measurements  Shim rods  Uncertainty ~10%  Rod drop o Technique (6%)  Reg rod o Shadowing (8%)  Rod drop and positive period o Statistical Error (0.2%)  SDM βeff  Rod drop sum  NRAD = 0.0071  ER  GA = 0.0078  Positive period  Range = 0.007-0.008  Graphite blocks  Benchmark =  Compare recalibrated ER difference 0.0075 ± 5% (1σ)  Dry tube  Compare ER difference 14
  • Location of Dry Tube and Graphite Blocks North beam A5 tube (void) C1 13.97 S2 East beam tube (void) 13.97 S1 R D1 Dry tube (void) D 90 Water Fuel element S1 Shim 1 control rod S2 Shim 2 control rod R Regulating control rod Dimensions in cm Graphite reflector block F4 11-GA50002-31-6 15
  • Reactivity Effects Results – 56 RodsWorth Measurement Benchmark ($) MCNP5 ($) C/E Excess Reactivity 0.37 ± 0.02 0.43 ± 0.02 1.16 ± 0.10 Shutdown Margin -7.54 ± 0.49 -7.83 ± 0.23 1.04 ± 0.07 Shim Rod 1 -2.76 ± 0.31 -3.04 ± 0.15 1.10 ± 0.14 Shim Rod 2 -2.72 ± 0.30 -2.60 ± 0.13 0.96 ± 0.12 Reg Rod -2.43 ± 0.23 -2.62 ± 0.11 1.08 ± 0.10 16
  • Reactivity Effects Results – 60 RodsWorth Measurement Benchmark ($) MCNP5 ($) C/E Graphite Block A5 -0.17 ± 0.06 -0.13 ± 0.06 0.79 ± 0.45 Graphite Block C1 -0.41 ± 0.06 -0.39 ± 0.04 0.96 ± 0.18 Graphite Block D1 -0.43 ± 0.06 -0.41 ± 0.04 0.95 ± 0.17 Graphite Block F4 -0.45 ± 0.06 -0.44 ± 0.04 0.98 ± 0.17 Excess Reactivity 1.12 ± 0.05 1.17 ± 0.04 1.05 ± 0.06 Shutdown Margin -6.73 ± 0.47 -6.66 ± 0.23 0.99 ± 0.08 Shim Rod 1 -2.68 ± 0.30 -2.79 ± 0.14 1.04 ± 0.13 Shim Rod 2 -2.75 ± 0.33 -2.63 ± 0.13 0.95 ± 0.12 Reg Rod -2.42 ± 0.16 -2.42 ± 0.08 1.00 ± 0.07 Dry Tube -0.06 ± 0.01 -0.04 ± 0.01 0.69 ± 0.25 17
  • Future Work NRAD Upgrade 4 additional fuel North beam tube rods (void) 13.97 4 graphite rods D 90 Repeat start-up tests at 62 and 64 S2 East beam rod loadings tube (void) 13.97 Weigh graphite S1 R blocks Flux measurements Void effects Water Graphite element Characterize beams Fuel element S1 Shim 1 control rod S2 Shim 2 control rod R Regulating control rod Dimensions in cm Graphite reflector block 11-GA50002-31-3 18
  • Conclusion Completed benchmark evaluation of cold start-up measurements  Large uncertainty in water saturation of graphite blocks  ~1% high computational bias in criticality  Very good agreement for worth measurements  Path forward for additional benchmark experiment data 19
  • ¿Questions? 20
  • Extra Slides 21
  • Experiment Evaluation – Biases Simplifications were  Noticeable biases needed Simplification of  Understand worth fuel rod end fittings and sensitivity of Removal of steel various components impurities  Develop easier to use Use of average fuel benchmark model composition  Speed up calculation Replace control rod time guide tubes with H2O Most simplifications caused minor Replace beam line structure with void changes in keff 22
  • Calculated Spectral Data – 56 rods (MCNP5) Model Detailed Simple Cross Section Library ENDF/B-VII.0 ENDF/B-VII.0 keff 1.00765 1.00906 ±σk 0.00007 0.00007 Neutron Leakage (%) 0.03 2.28 Thermal (<0.625 eV) 80.58 80.75 Fission Fraction, Intermediate 16.42 16.27 by Energy (%) Fast (>100 keV) 2.99 2.98 234U 0.01 0.01 235U 98.74 98.74 Fission Fraction, 236U 0.01 0.01 by Isotope (%) 238U 1.24 1.23 Average Number of Neutrons Produced 2.444 2.444 per Fission Energy of Average Neutron Lethargy 0.26679 0.26275 Causing Fission (eV) 23
  • Calculated Spectral Data – 60 rods (MCNP5) Model Detailed Simple Cross Section Library ENDF/B-VII.0 ENDF/B-VII.0 keff 1.00934 1.01029 ±σk 0.00007 0.00007 Neutron Leakage (%) 0.04 2.39 Thermal (<0.625 eV) 80.38 80.54 Fission Fraction, Intermediate 16.60 16.46 by Energy (%) Fast (>100 keV) 3.02 3.00 234U 0.01 0.01 235U 98.73 98.73 Fission Fraction, 236U 0.01 0.01 by Isotope (%) 238U 1.25 1.24 Average Number of Neutrons Produced 2.444 2.444 per Fission Energy of Average Neutron Lethargy 0.27191 0.26810 Causing Fission (eV) 24
  • Discussion of Cross Section Data Cause of Bias?  Er  Cross section and/or code  KENO and MCNP keff related values agree when Er is  Fuel rods significant removed 235U and 238U  Low-lying resonance approximations in free-  Small difference between gas scattering kernels ? JENDL-3.3 and ENDF/B- VII.0 data  Currently being o JENDL thought to be “more investigated correct” o KUCA 91Zr and ZrH S(a,b)  Graphite (Cnat)  Bias identified  (n,g) larger in JENDL-3.3 o Slovenia TRIGA Mark II than ENDF/B-VII.0 o Fuel contains no Er  (n,g) increased further o ICNC 2011 (Sept.) in JENDL-4.0 base on  ZrH S(a,b) calculated HTGR research differently in JEFF-3.1 and ENDF/B-VII.0 25
  • Future Work – II Computational  Additional “To-Do” Methods Benchmarks Continue to SNAP 10A/2 water immersion investigate Er experiments o KUCA experiments Expand NRAD Investigate thermal benchmark library scattering S(α,β) Invite other cross sections members of TRIGA o Collaborative effort community to benchmark their reactors 26
  • References Bess, J. D., Maddock, T. L., Marshall, M. A., “Fresh Core Reload of the Neutron Radiography (NRAD) Reactor with Uranium(20)-Erbium- Zirconium-Hydride Fuel,” INL/EXT-10-19486, Idaho National Laboratory (2010). International Handbook of Evaluated Reactor Physics Benchmark Experiments, NEA/NSC/DOC(2006)1, OECD-NEA, Paris, France (2011). Matsumoto, T., Hayakawa, N., “Benchmark Analysis of TRIGA Mark II Reactivity Experiment Using a Continuous Energy Monte Carlo Code MCNP,” J. Nucl. Sci. Tech., 37(12), 1082-1087 (2000). Snoj, L., Žerovnik, G., Trkov, A., “Analysis of Cross Section Libraries on Zirconium Benchmarks,” Proc. ICNC 2011, Edinburgh, Scotland, September 19-22 (2011). Jeraj, R., Ravnik, M., “TRIGA Mark II Reactor: U(20)-Zirconium Hydride Fuel Rods in Water with Graphite Reflector,” IEU-COMP-THERM-003, International Handbook of Evaluated Criticality Safety Benchmark Experiments, NEA/NSC/DOC(95)03, OECD-NEA, Paris, France (2010). Shimakawa, S., Goto, M., Nakagawa, S., Tachibana, Y., “Impact of Capture Cross-Section of Carbon on Nuclear Design for HTGRs,” Proc. HTR 2010, Prague, Czech Republic, October 18-20 (2010). 27
  • Detailed Model Development 28
  • Fuel Clusters Top Assembly 7.7089 Fuel Rods 3.8862 3.8862 Top View 8.10006 Bottom Dimensions in cm Assembly 10-GA50002-145-5 10-GA50002-74-2 Dimensions in cm 10-GA50002-145-4 29
  • Top fuel fittingFuel Rods Top end fitting (SS 304/304L) OD 3.4894 cm Cladding 0.180 MIN. 1.27 Void gap 0.724535 Upper Top axial reflector (graphite) 8.6868 fuel reflector OD 3.27914 Cladding (SS 304/304L) ID 3.4894, OD 3.591 Zirconium rod U-Er-Zr-H fuel ID 0.635, OD 3.4805 23.125 (REF) 38.02 58.73751 + 0.000 25.875 - 0.031 Fuel pellets (3) Zirconium rod OD 0.5715 Molybdenum poison disc + 0.003 1.370 - 0.000 I.D. (REF) 0.079375 Molybdenum poison disc Lower fuel OD 3.46964 reflector Bottom axial reflector (graphite) OD 3.27914 8.6868Bottom end fitting (SS 304/304L) OD 3.4894 1.27 Dimensions in cm Bottom fuel fitting 10-GA50002-145-1 1.414 DIA. Dimensions in inches NOM. (REF) 10-GA50002-76 30
  • Control Rods Detail of top fitting 2.5 1.25 0.5 Top end fitting (Al 6061) 5/8 flats 0.5 0.625 OD 3.03276 1.9685 0.40 D 1.194 D 1/2-13 UNC-2A 0.125 + 0.000 0.060 - 0.004 0.1875 Void Void 17.78 Cladding (Al 6061) ID 3.03276 1-1/8" O.D. x 0.035" wall OD 3.175 L 6.5 Al alloy tube Spacer 1.187 +0.005 O. D. - 0.000 0.5 D thru L 0.5 59.436 24.00 REF 23.40 B4C absorber 23.25 1-1/4" O.D. x 0.028" wall OD 3.01498 L 23.4 Al alloy tube 38.1 15.0 Boron carbide D 1.187 +0.030 - 0.000 Detail of bottom fitting D 1.194 0.75 Bottom end fitting (Al 6061) 0.625 OD 3.03276 0.1875 1/16 x 1/16 groove 1.5874 Dimensions in cm 10-GA50002-145-2 0.060 +0.000 0.125 1/16 DIA -0.004 THRU Dimensions in inches 10-GA50002-90 31
  • Guide Tube 32
  • Graphite Reflectors Handle W0170-0089-DE (REF) Screw, HEX SOC HD 5/8-11 UNC-2A x 2 LG ALUM 2011-T3 2 REQD Graphite element reactor grade 0.9525 cm x 45° chamfer 25.875 ± 0.125 65.72251 7.366 7.366 Top View 0.656 +0.002 DIA DRILL - 0.005 x 0.875 ± 0.060 DP 2 places 5/8-11 UNC-2A THD Dowel pin Both ends 0.645 DIA x 1-1/2 LG Alum 2011-T3, 2 REQD Tie rod + 0.000 D 1.968 - 0.030 5/8 x 7-7/8 LG ALUM 2011-T3 Adapter ALUM 2011-T3 Dimensions in cm Adapter 10-GA50002-145-3 W0170-0090-DD (REF) 0.375 ± 0.030 x 45° ± 5° Hex nut Chamfer TYP 5/8-11 UNC-2B THD ALUM 2011-T3 2.900 +0.100 - 0.000 square Dimensions in inches 10-GA50002-05-1 33
  • Photograph of NRAD Tank 34