Your SlideShare is downloading. ×
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Edwards - Residual Catalytic Cracking -  NMR - ACS August 2008
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Edwards - Residual Catalytic Cracking - NMR - ACS August 2008

163

Published on

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
163
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
10
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Process NMR Associates RCC Feedstream Analysis by 1H and 13C NMR: Multivariate Prediction of Chemical and Physical Properties By John C. Edwards , Ph.D. Process NMR Associates, LLC, 87A Sand Pit Rd, Danbury CT USA Jincheol Kim, SK Energy Co., Ltd, SK Energy Technology Center, 140-1, Wonchon-dong, Yuseong-gu, Daejeon 305-712, Korea At the 236th ACS National Meeting, Philadelphia PA, August 17-21, 2008
  • 2. Process NMR Associates Company: Process NMR Associates, LLC Founded : 1997 Personnel: 2 Ph.D. Chemists Background: Analytical and Process Spectroscopy in Petroleum and Petrochemical Industry Process NMR Applications and Support Under Contract to Invensys (1997-2003) Process and Analytical NMR Instrumentation Development Process NMR Project Suppliers Facilities: Two Qualion 60 MHz Process MRA Units 300 MHz NMR (Liquids) and 200 MHz NMR (Solids) Oxford Instruments 20 and 2 MHz Bench-top NMR Resonance Systems NMR Spectrometer – 20 MHz Bench-top and Surface Analyzer Shimadzu GC-2010 – Simulated Distillation Smiths Detection – FTIR-ATR Business: Application Development for Process NMR Technology Process NMR Instrumentation Development and Implementation Analytical NMR Services for 300+ Commercial and Academic Customers Process and Laboratory NMR Database Development Licensing of Copyrighted NMR Databases and Patented Applications Business Partners: TTC Labs, USA (ttclabs.com) Modcon Systems, Israel (modcon-systems.com) Qualion, Israel (qualion-nmr.com) Smiths Detection, USA (smithsdetection.com) Resonance Systems, Russia (mobilenmr.com) Swagelok, USA (swagelok.com) Triangle Analytical, USA (triangleanalytical.com)
  • 3. Process NMR Associates NMR Analyzers
  • 4. Process NMR Associates Application: Steam Cracking Optimization Installed 2000 Cracker Facility Capacity: 600,000 Tonnes per Year Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization NMR Analysis: 3-4 Minute Cycle (Single Stream) NMR PLS Outputs: Naphtha – Detailed PIONA C4-C10 n-paraffin, i-paraffin, aromatics, naphthenes
  • 5. Process NMR Associates Application: Closed Loop Reformer Control Installed 1998 Reformer Capacity: 34,000 Barrels per Day Control Strategy: Control on MON and Benzene Content NMR Analysis: 2 Minute Analysis NMR PLS Outputs: RON, MON, Benzene (Wt%), Total Aromatics (Wt%)
  • 6. Col 4, line 5-14, “with at least 50% of the oil molecules containing at least one branch, at least half of which are methyl branches. At least half, and more preferably at least 75% of the remaining branches are ethyl, with less than 25% and preferably less than 15% of the total number of branches having three or more carbon atoms. The total number of branch carbon atoms is typically less than 25%, preferably less than 20% and more preferably no more than 15% (e.g., 10-15%) of the total number of carbon atoms comprising the hydrocarbon molecules.” Col 4, line 24-29, “Thus, the molecular make up of a base stock of the invention comprises at least 95 wt. % isoparaffins having a relatively linear molecular structure, with less than half the branches having two or more carbon atoms and less than 25% of the total number of carbon atoms present in the branches.” Col 12, Line 4-21, “What is claimed is: 1. A lubricant base stock comprising at least 95 wt. % non-cyclic iso-paraffins having a molecular structure in which less than 25% of the total number of carbon atoms of the isoparaffin structure are contained in the branches and less than half of the total iso-paraffin branches contain two or more carbon atoms. 2. A base stock according to claim 1 wherein at least half of the iso-paraffin branches are methyl branches. 3. A base stock according to claim 2 wherein at least half of the remaining, non-methyl branches are ethyl, with less than 25% of the total number of branches having three or more carbon atoms. 4. A base stock according to claim 3 wherein at least 75% of the non-methyl branches are ethyl. 5. A base stock according to claim 4 wherein of the total number of carbon atoms contained in the iso-paraffin molecule, 10- 15% of the carbon atoms are located in the branches.” Col 2, line 8, “These base stocks are premium synthetic lubricating oil base stocks of high purity having a high VI, a low pour point and are iso-paraffinic, in that they comprise at least 95 wt. % of non-cyclic iso-paraffins having a molecular structure in which less than 25% of the total number of carbon atoms are present in the branches, and less than half the branches have two or more carbon atoms.”
  • 7. Process NMR Associates Quantitative 13C NMR of F-T Wax
  • 8. p p m1 01 52 02 53 03 54 04 5 Process NMR Associates Quantitative 13C NMR of F-T Wax - Vertical Expansion
  • 9. p p m1 01 52 02 53 03 54 04 5 Process NMR Associates 1H-13C DEPT NMR of F-T Wax All Protonated Carbons CH Carbons CH2 Carbons CH3 Carbons
  • 10. Process NMR Associates Exxon FT-wax Patent
  • 11. Process NMR Associates ppm15202530354045505560 β γ δ ε α' β' γ' t-et p-et p-pr t-pr Sub-Me 4-Me Adj-Me 3-Me 2-Me t-Bu p-Bu Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 α Peak X
  • 12. p p m1 21 41 61 82 02 22 42 62 83 0 δ β' γ' β t-et p-et p-pr t-pr Sub-Me 4-Me Adj-Me 3-Me 2-Me t-Bu α p-Bu Peak X Reg6Reg5Reg4Reg3 Process NMR Associates
  • 13. Process NMR Associates
  • 14. Process NMR Associates
  • 15. Process NMR Associates Residual Catalytic Cracking – Feed-stream Analysis Analysis – Refractive Index, Distillation, Specific Gravity Calculation – Watson K-Factor Outcome: aromatic carbon number aromatic hydrogen number total hydrogen content Proposition: Detailed hydrocarbon analysis for kinetic model development
  • 16. 0 5 10 15 20 25 20 40 60 80 100 120 140 0 .05 .1 .15 .2 .25 30 35 40 45 50 55 60 0 5 10 15 20 85 90 95 100 105 110 115 120 125 Aliphatic Region CH3 CH2 Aromatic Region 60 MHz Process – 1H NMR Data 50 Samples
  • 17. Process NMR Associates 0 20 40 60 80 100 120 0 20 40 60 80 100 300 MHz - 1H NMR – RCC Feeds 0 20 40 60 80 100 120 0 20 40 60 80 100
  • 18. Aromatic Region 15 20 25 30 35 Mono Di Tri 0 50 100 150 200 250 55 60 65 70 75 80 85 90 95 100 Aliphatic Region CH3 CH2 Alpha-Protons CH+Nap
  • 19. Process NMR Associates 0 20 40 60 80 0 5 10 15 20 Saturates (wt %)25 Oxygenates (wt %)24 Olefin functions (wt %)23 Benzene (wt %)22 Di+ aromatics (wt %)21 Mono aromatics (wt %)20 Total aromatics (wt %)19 Bridgehead carbons18 Substituted aromatic carbon17 Paraffinic CH316 Paraffinic CH315 Paraffinic CH14 Saturates13 a-CH3 to aromatics12 a-CH2 to aromatics11 a-CH to aromatics10 Total α protons to aromatics9 Oxygenates protons8 RHC=CH27 RHC=CHR6 RHC=CH25 Total olefinic4 Monoaromatic protons3 Diaromatic+ protons2 Total aromatic1 1H - Type AnalysisParameter H-Type NMR Analysis Depicted as a “Spectrum”
  • 20. Process NMR Associates 0 50 100 150 200 0 50 100 150 200 Aromatics Aliphatics 13C NMR Data
  • 21. Process NMR Associates Aromatic Region 40 50 60 70 80 90 140 150 160 170 180 190 Aliphatic Region
  • 22. Total aliphatic carbon25 Total olefinic carbon24 Total heteroaromatic carbon23 Peripheral unsubstituted aromatic carbon22 Internal aromatic carbon21 Naphthenic substituted aromatic carbon20 CH2 & CH substituted aromatic carbon19 Methyl-substituted aromatic carbon18 Aliphatic sub aromatic carbon17 Total aromatic carbon16 Total carbonyl carbon15 Methyl carbon14 Methylene carbon13 Methine carbon12 Heteroaromatic other than phenoxy carbon11 Protonated aromatic carbon10 Protonated Internal aromatic C+ 1/2 internal aromatic C9 Half of internal aromatic carbon8 CH3 sub aromatic carbon7 Naphthenic sub aromatic carbon6 CH2 & CH sub aromatic carbon5 Phenoxy carbon4 Carboxylic acids, esters and amides carbonyl carbon3 Aldehyde carbonyl carbon2 Ketone carbonyl carbon %c1 Carbon Type Parameters (%C Unless Otherwise Listed)Index Peak x50 t-Bu49 p-Bu48 Reg547 b'46 Reg445 d44 e43 g'42 Reg341 g40 Reg239 a'38 Reg137 Naphthenic methyl carbon (CH3)36 Naphthenic methylene carbon (CH2)35 Naphthenic methine carbon (CH)34 Total naphthenic carbon33 Paraffinic methyl carbon (CH3)32 Paraffinic methylene carbon (CH2)31 Paraffinic methine carbon (CH)30 Total paraffinic carbon29 Aliphatic methyl carbon (CH3)28 Aliphatic methylene carbon (CH2)27 Aliphatic methine carbon (CH)26 Carbon Type Parameters (%C Unless Otherwise Listed)Index Total butyl branching content75 Total propyl branching content74 Total ethyl branching content73 Butyl branching Index72 Propyl branching Index71 Ethyl branching Index70 Methyl branching index69 Average Straight Chain Length (C No.)68 C in Branched Environment: % 1-linear paraffin structure67 Total Branching Content: % C Near Branching C/Total C66 Branching Index: %Branching CC/Total Paraffin65 Waxiness : % Epsilon C/Total Paraffin64 Linear Paraffin Structure: % Linear Paraffin/Total Paraffin63 p-Ethyl62 t-Ethyl61 a60 4-Me59 t-Pr58 p-Pr57 Reg756 3-Me55 All other-Me54 Aromatic a methyl carbon53 2-Me52 b51 Carbon Type Parameters (%C Unless Otherwise Listed)Index Calculated C-Type Parameters
  • 23. Process NMR Associates 0 20 40 60 80 0 10 20 30 40 50 60 70 C-Type NMR Parameters Depicted as a “Spectrum”
  • 24. Process NMR Associates 0.9340.9120.6560.9210.913Tetra+ aromatics 0.8630.9390.8620.9110.941TriAromatics 0.8970.9510.8660.9450.927Diaromatics 0.8970.9540.9120.9410.930Monoaromatics 0.9410.9650.9040.9460.936Total Aromatics 0.8620.9220.8190.9140.925HYDROGEN 0.9970.9980.9260.9510.958Carbon Aromaticity 0.9620.9790.8550.9640.931SULPHUR 0.8750.9310.7270.9520.940MCRT ‐0.935‐0.951‐Viscosity Index 0.9740.9820.9240.9830.961Density at 15o C C‐Type Spectrum13C NMR‐ 1 ppm BinH‐Type Spectrum1H NMR ‐ 0.1 ppm Bin1H NMR 0.1 ppm BinParameter 75 MHz Carbon‐13300 MHz Proton60 MHz Proton Resonance  Frequency Summary of RCC Feed NMR Analysis – Correlations to Physical/Chemical Properties
  • 25. Density by 13CNMR 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Actual Density (g/ml) PredictedDensity(g/ density.tdf,3density.tdf,3 -.0025 -.001 0 30 60 90 120 150 180 .0005 0 30 60 90 120 150 180 13C NMR Correlation to Density
  • 26. 1H NMR Correlation to Density 1HNMR- DensityCorrelation 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Actual Density (g/ml) PredictedDensity(g/ Process NMR Associates density_1h.tdf,7density_1h.tdf,7 -.005 -.002 .001 .004 0 30 60 90 -.005 -.002 .001 .004 0 30 60 90
  • 27. Density- H-TypeParameters 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Actual Density (g/ml) PredictedDensity(g/ -.04 -.01 .02 .05 .08 0 6 12 18 24 -.04 -.01 .02 .05 .08 0 6 12 18 24 Density Correlation with Proton Type Parameters
  • 28. Density- C-TypeParameters 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 0.84 0.86 0.88 0.9 0.92 0.94 0.96 0.98 1 Actual Density (g/ml) PredictedDensity(g/ -.002 -.0005 .001 .0025 0 15 30 45 60 -.002 -.0005 .001 .0025 0 15 30 45 60 Density Correlation with Carbon Type Parameters
  • 29. density_13c_calculated.tdf,5 (R² = 0.980019145)density_13c_calculated.tdf,5 (R² = 0.980019145) Actual Concentration ( C1 )Actual Concentration ( C1 ) PredictedConcentration(F6C1)PredictedConcentration(F6C1) .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 1 2 3 4 5 6 7 8 9 10 12 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39 4041 42 43 44 46 4748 49 50 51 52 54 55 56 .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 Variable Selection Process Reduces Number of Variables Linear Equations that Describe Density in terms of 13 Carbon Type Parameters
  • 30. 0.8950.697Aromatic carbons per aromatic group 0.8990.448Mole fraction of bridgehead aromatic carbon 0.8780.085N methine/N methylene ratio 0.9660.809N methyl carbon (CH3) 0.9870.957N methylene carbon (CH2) 0.9960.927N methine carbon (CH) 0.9890.964Total naphthenic carbon 0.9600.810P methyl carbon (CH3) 0.9980.987P methylene carbon (CH2) 0.9400.876P methine carbon (CH) 0.9950.984Total paraffinic carbon 0.9960.610Aliphatic methyl carbon (CH3) 1.0000.976Aliphatic methylene carbon (CH2) 0.9990.932Aliphatic methine carbon (CH) 0.9970.952Total aliphatic carbon 0.9760.275Total heteroaromatic carbon 0.9960.950Peripheral unsubstituted aromatic carbon 0.9940.949Internal aromatic carbon 0.9960.973Naphthenic substituted aromatic carbon 0.9960.935CH2 & CH substituted aromatic carbon 0.9940.970Methyl-substituted aromatic carbon 0.9990.962Aliphatic substituted aromatic carbon 0.9960.980Total aromatic carbon 13C NMR 1H NMR 13C Parameter 0.9500.917Total butyl branching content 0.9330.919Total propyl branching content 0.9460.946Total ethyl branching content 0.9510.919Butyl branching Index 0.9320.919Propyl branching Index 0.9450.945Ethyl branching Index 0.9620.972Methyl branching index 0.9860.967Average straight chain length 0.9760.972Carbons in branched environment 0.9720.964Total branching content 0.9720.973Branching index 0.9830.977Waxiness : e/total paraffin 0.9760.972Linear paraffin structure 0.9320.913Average chain length of paraffinic substitutions 0.9340.892# of paraffinic carbons per cluster 0.9390.317Naphthenic rings per cluster 0.9240.524# of naphthenic ring carbons per cluster 0.9060.449Naphthenic CH3 per cluster 0.9260.032Heteroatoms per cluster 0.9100.227Naphthenic substitutions per cluster 0.8990.063CH2 & CH substitutions per cluster 0.9090.379Methyl-substitutions per cluster 0.9060.087Aliphatic substitutions per cluster 13C NMR 0.995 1H NMR 0.941 13C Parameter Cluster number (=aromatic group number) Correlation of 1H and 13C NMR Spectra to 13C Derived Parameters
  • 31. Process NMR Associates CarbonAromaticityCorrletaedby1HNMR 5 10 15 20 25 30 5 10 15 20 25 30 Actual Fa (%C) PredictedFa(% CarbonAromaticityCorrelatedto13CSpectra 5 10 15 20 25 30 5 10 15 20 25 30 Actual Fa (%C) PredictedFa(% 1H and 13C NMR Correlation to Carbon Aromaticity
  • 32. Process NMR Associates 13CNMRBranchingIndex- 1HNMR 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 Actual BranchingIndex PredictedBranchingInd 13CNMRBranchingIndex- 13CNMR 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 Actual Branching Index PredictedBranchingInd 1H and 13C NMR Correlation to Branching Index Branching Carbons/Total Paraffinic Carbons
  • 33. Process NMR Associates Summary Chemical and Physical Properties of RCC Feedstreams can be determined by 1H NMR (at 60 and 300 MHz) and by 13C NMR H-Type and C-Type Parameters do not provide as good a correlation as is observed by full spectrum regression. This is due to loss of resolved chemical shift information when the spectrum is reduced to larger integral areas. 1H NMR can be combined with PLS regression modeling to provide detailed carbon type analysis for RCC Feeds Regression analysis of 13C NMR data can be utilized to fully automate the prediction of 13C NMR type analysis : reducing the necessity for considerable knowledge and analysis time on the part of the analyst.
  • 34. Process NMR Associates Parallel Work Similar analysis has been performed on: Crude Oil - TBP, Density, Water Canadian Syncrude - Olefins, Density, Distillation Vacuum Residues – Distillation, Density, 13C Parameters Naphtha – Density, PIONA, Distillation Gasoline – Octane, Benzene, Oxygenates, Distillation, Aromatics Kerosene – Distillation, Smoke Point Jet Fuel – Cloud Point, Freeze Point, Distillation, Density Diesel – Density, Cloud point, Flash, Distillation, Cetane Index Reformate – Octanes, Benzene, Aromatics Alkylate – Octane, Distillation Lubricant Oil – Pour, VI, Distillation, 13C Parameters FT-Waxes – 13C Parameters VGO – FCC Feeds (Same as RCC Feeds) Biodiesel

×