Edwards - NMR Presentation
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Edwards - NMR Presentation

on

  • 322 views

 

Statistics

Views

Total Views
322
Views on SlideShare
322
Embed Views
0

Actions

Likes
0
Downloads
10
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Edwards - NMR Presentation Presentation Transcript

  • 1. Process NMR Associates High field and Compact Low Field 1H and 13C NMR Applications for Petroleum and Refinery Stream Analysis, Process Control, and Reaction Monitoring Presented By John Edwards, Ph.D. Process NMR Associates, LLC Danbury, Connecticut May 17, 2013 Petrobras Reseach Center, Rio de Janeiro
  • 2. TTC Labs, Inc. Process Engineering Excellence Process NMR Associates TopNIR Systems 250+ Analytical NMR Customers Analytical Services And Consulting
  • 3. Process NMR Associates Superconducting NMR Systems
  • 4. Process NMR Associates High Resolution FT-NMR – Online / in Process First Generation NMR – 1998 Elbit-ATI/Foxboro NMR Second Generation NMR – 2003 Qualion
  • 5. Lab version On-Line version New magnet design – 30mm bore size • The amount of magnetic pieces that assemble the magnet reduced from 34 to 10. Reduction in Mechanical Complexity • Bore size of the magnet was increased to 30 mm - improved temperature susceptibility • Improved temperature and shim stability. New Digital Spectrometer Design - reduces footprint, improves signal processing capabilities Probe - Improved Probe Q for Higher Sensitivity. Software – Windows 7 – Improved Chemometric Capabilities Third Generation NMR – Aspect AI NMR System
  • 6. NMR Sample System and Placement Process NMR Associates
  • 7. Process NMR Associates NMR Lock - External 7Li Lock @ 22.5 MHz Shim DACs Built into the Magnet Enclosure Matrix Shimming Performed by Optimizing FID RMS
  • 8. Process NMR Associates p p m1234567 CH3 CH3 CH3 O OH A B C D E F G H A F B CG H D E PEG OH PEG p p m4 06 08 01 0 01 2 01 4 01 6 0 CH3 CH3 CH3 O OH A B C D E F G H I J H I J D E F A B G C PEG CDCl3 FT-13C FT-1H 300 MHz A F B C G H D E PEG OH PEG 58 MHz
  • 9. 60 MHz NMR of Essential Oils
  • 10. Adhesive Prepolymers
  • 11. Bio Oils and Hydrotreated Biomass Pyrolysis Products -1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0 f1 (p pm ) Kior-0 01 -H Bio-Oil V1 20 91 3- 04 KH D T Liq.Fr ac._D O_ Lo w C on v 1 H N MR in DM SO JCE-P NA-Merc3 00 60 MHz 300 MHz Labile OH Groups and Aldehydes Water and Residual Alcohol/Ether Aromatics Olefin alpha Protons Aliphatic CH2/CH3 TMS -1.5-1.0-0.50.00.51.01.52.02.53.03.54.04.55.05.56.06.57.07.58.08.59.09.510.010.511.011.512.0 f1 (ppm) Kior-004-H_D2O Sample 1 Bio-Oil 1H NMR in DMSO+D2O +45 Days JCE-PNA-MVX300 60 MHz 300 MHz D2O Added to Solution Deuterium Exchange between D2O and labile protons OH/NH/SH drastically reduced in intensity Water Resonance Shifts Labile OH Groups Reduced Water Aromatics Olefin alpha Protons Aliphatic CH2/CH3 TMS Ether Alcohol -1 .5-1.0-0.50.00.51.01.52.02.53.03.54 .04.55.05.56.06.57.07.58.08.59.09.510 .010.511.01 1.512.0 f1 (p p m ) Kio r-0 0 2 -H H yd r otr ea te d H e a vy O il Z 13 2 8 00 0 1 20 0 0 pp m KHD T-A 1 H NM R in CDCl3 JCE -P NA-Merc3 00 60 MHz 300 MHz TMS Aliphatic alpha CH3 alpha CH2/CH Could sharp peak be cyclohexane C 3H -1.5-1.0-0.50.00.51.01 .52.02 .53.03.54.04.55 .05.56 .06.57.07.58.08.59 .09.510.010.511.011 .512.0 f1 (p p m ) Kio r-0 0 3 -H H yd ro tr e a te d H e a vy O il D r u m #3 KHD T We e k ly F e e d 1 H N M R in DM S O JCE -P N A-Merc 3 0 0 60 MHz 300 MHz Labile OH Groups Water and Residual Alcohol/Ether Aromatics Olefin alpha Protons Aliphatic CH2/CH3 TMS
  • 12. Process NMR Associates ppm12345678 300 MHz CH3 CH2 CH a-CH3 a-CH2 Aromatics Ethanol Alkenes 60 MHz Gasoline 1H NMR
  • 13. Process NMR Associates Gasoline Parameters: Octane Numbers Distillation Properties (T10, T50, T90) Benzene Content (wt%) Total Aromatics (Wt%) Total Olefins (Wt%) Total Saturates (Wt%) Oxygenates (Wt%) Reid Vapor Pressure
  • 14. Process NMR Associates Application: Closed Loop Reformer Control - Installed 1998 Reformer Capacity: 34,000 Barrels per Day Control Strategy: Control on MON and Benzene Content NMR Analysis: 2 Minute Analysis NMR PLS Outputs: RON, MON, Benzene (Wt%) Total Aromatics (Wt%) RON Validation - April 2001 - April 2002 100 101 102 103 104 105 106 107 108 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 NMR CFR
  • 15. Process NMR Associates Application: Steam Cracking Optimization Installed 2000 Cracker Facility Capacity: 600,000 Tonnes per Year Control Strategy: Feed Forward Detailed Hydrocarbon Analysis to SPYRO Optimization NMR Analysis: 3-4 Minute Cycle (Single Stream) NMR PLS Outputs: Naphtha – Detailed PIONA C4-C10 normal-paraffin, iso-paraffin, aromatics, naphthenes
  • 16. Process NMR Associates
  • 17. Process NMR Associates Toluene Actual Toluene (Wt%) PredictedToluene(Wt%)(F9C1) 1 1 2 3 45 6 7 8 9 10 11 12 1314 15 16 17 18 19 20 21 22 2325 26 2728 29 30 31 32 33 34 35 36 37 383940 41 42 43 44 45 46 49 50 51 53 5456 58 59 62 63 66 68 69 70 71 73 75 76 77 78 79 80 82 83 84 85 86 87 88 90 91 9293 94 95 9697 98 99 101 102 103 104 105 106 108 109 110 111 112 113 114 115 116 117 118 119120 121 122123 124 125126 127 128 129130131132133134135136137 138139140 141142143 144145146 147148149 150151152 156157158 159160161 162163164 165166167168169170 171172173 174175176 177 178179 180181182 183184185 186187188 189190191 192193194 195196197 198199200 201202203 204205206 207208209210211212 213214215 216217218 219220221222223224 225226227 228229230 231232233 234235236 237238 239240241242243244245246247248249250251 252253 254 255256257 258259260261262263 264265266 267268269 270271272 273274275 279280281282 283284285 286287 288 289290291 292293294 295296 297298299300 301302303 304305306 307308309 310311312 313314315 319320321 322323324325326327 328329330 331332333334335336 337338339 340341342343344345 346347348 349350351 352353354 355356357 358359360 361362363 364365366367368369 370371372 373374375 376377378 379380381382383384 385386387 388389390391 392393 394395396 397398399400401402 403404405 406407408 409410411 412413414 427428429 430431432433434435 436437438 439440441 445446447 448449450 451452453454455456 457458 459 460461 462 463464 465 466467 471472473 477478 481482 483484485 489490493494495496 -.5 1 2.5 4 5.5 0 1.5 3 4.5 Spectral Units ( ) BetaCoefficient(F9C1) -1.5 0 1.5 10 40 70 100 130 -1.5 0 1.5 10 40 70 100 130
  • 18. Process NMR Associates Cyclohexane Beta Coefficients Spectral Units ( )Spectral Units ( ) BetaCoefficient(F9C1) -2 -.5 1 2.5 10 40 70 100 130 -2 -.5 1 2.5 10 40 70 100 130 PredictedCyclohexane(F9C1) 1 4 7 10 1 4 7 101 4 7 10 1 23 45 6 7 8 910 11 12 1314 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3132 33 34 35 36 37 38 39 4041 42 43 46 47 48 49 50 51 52 53 54 55 56 58 596067 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 84 85 86 87 88 89 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 108109 110111 112 113 115 116 117118 119120121 122123124 125126127 128129130131132133 134135136 137138139 140 141142 143144145146 147148149150151152 153154 161162163 164165166 167168169170171172173 174 175176177178 179180181 182183184 185186187 191192 193 194195 196 197198 199 200201202 203204205 206207208 209210211 212213214 215216 217 218219220 221 222 223 224225226 227 228229 230231232 233234235 236237238239240241 243244 245 246247 248249 250251 252 253 254255256 257258259 260261262 263264 265 266 267 268 269270271272 273 274275 276277 278 279280281 282283284 285286 287 288289290 291292293 294295296 297298299 300 301 302 303304305 309310311 312313314 315316317 318319320 321322323 324 325326 327328329 330 331332333334335 336337338339340341 342343 345346347 348349350 351352353 354355356357358359 360361362 363364365 366367368 369370371 372373374 375376377 378379380 381382383 384385386 387388389 390391392 393394395396397398 399400401 402403404 405 406407408409410 414415416 417418419 420421422423424425429430431 432433434438439440 441442443 444445 446 447448449 453454455 456457 458459460 464465466 482483 484485 486487488489 1 4 7 10 1 4 7 10 Actual Cyclohexane (Wt%)
  • 19. Process NMR Associates
  • 20. Process NMR Associates
  • 21. Process NMR Associates Cyclopentane Date Wt% GC NMR
  • 22. Process NMR Associates
  • 23. Process NMR Associates 0 2 4 6 8 10 12 14 16 1 147 293 439 585 731 877 1023 1169 1315 1461 1607 1753 iso-C5 iso-C6 iso-C7 iso-C8 iso-C9 96 Hours of NMR Process Output – iso-Paraffin Components
  • 24. Process NMR Associates 0 0.5 1 1.5 2 2.5 3 3.5 4 1 167 333 499 665 831 997 1163 1329 1495 1661 Benzene Toluene Ethyl-Benzene Xylenes 96 Hours of NMR Process Output – Aromatic Components
  • 25. Application: Crude Distillation Unit Optimization and Control Installed 2001 Crude Unit Capacity: 180,000 Barrels per Day Control Strategy: Control on Kero Freeze Point and Crude Tower Optimization NMR Analysis: 15 Minute Cycle - NMR Results into ROMEO CDU Optimization NMR PLS Outputs: Naphtha – T10, T50, T90, EP - D86 Distillation Kero – Freeze, Flash Crude – API, Sulfur, TBP (38, 105, 165, 365, 565C) Process NMR Associates Kero Freeze Lab Vs NMR -65 -60 -55 -50 -45 -40 2002/05/01 2002/05/03 2002/05/05 2002/05/07 2002/05/09 2002/05/11 2002/05/13 2002/05/15 2002/05/17 2002/05/19 Lab Freeze (DegC) NMR Freeze (DegC)
  • 26. Process NMR Associates
  • 27. Process NMR Associates Crude Adjustment 0 10 20 30 40 50 60 70 80 90 100 -150 50 250 450 650 850 1050 CutPoint Deg C WT%Yield Before After NMR Crude Reconciliation
  • 28. Process NMR Associates 20 40 60 80 100 120 140 VI 103 FACTOR1 F A C T O R 3 IL VI 115 VI 103 -3.0 -2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0 Dewaxing Dearomatization VI 100 AL Base Oil Manufacturing – NMR Control
  • 29. Col 4, line 5-14, “with at least 50% of the oil molecules containing at least one branch, at least half of which are methyl branches. At least half, and more preferably at least 75% of the remaining branches are ethyl, with less than 25% and preferably less than 15% of the total number of branches having three or more carbon atoms. The total number of branch carbon atoms is typically less than 25%, preferably less than 20% and more preferably no more than 15% (e.g., 10-15%) of the total number of carbon atoms comprising the hydrocarbon molecules.” Col 4, line 24-29, “Thus, the molecular make up of a base stock of the invention comprises at least 95 wt. % isoparaffins having a relatively linear molecular structure, with less than half the branches having two or more carbon atoms and less than 25% of the total number of carbon atoms present in the branches.” Col 12, Line 4-21, “What is claimed is: 1. A lubricant base stock comprising at least 95 wt. % non-cyclic iso-paraffins having a molecular structure in which less than 25% of the total number of carbon atoms of the isoparaffin structure are contained in the branches and less than half of the total iso-paraffin branches contain two or more carbon atoms. 2. A base stock according to claim 1 wherein at least half of the iso-paraffin branches are methyl branches. 3. A base stock according to claim 2 wherein at least half of the remaining, non-methyl branches are ethyl, with less than 25% of the total number of branches having three or more carbon atoms. 4. A base stock according to claim 3 wherein at least 75% of the non-methyl branches are ethyl. 5. A base stock according to claim 4 wherein of the total number of carbon atoms contained in the iso-paraffin molecule, 10- 15% of the carbon atoms are located in the branches.” Col 2, line 8, “These base stocks are premium synthetic lubricating oil base stocks of high purity having a high VI, a low pour point and are iso-paraffinic, in that they comprise at least 95 wt. % of non-cyclic iso-paraffins having a molecular structure in which less than 25% of the total number of carbon atoms are present in the branches, and less than half the branches have two or more carbon atoms.”
  • 30. Process NMR Associates Quantitative 13C NMR of F-T Wax
  • 31. p p m1 01 52 02 53 03 54 04 5 Process NMR Associates 1H-13C DEPT NMR of F-T Wax All Protonated Carbons CH Carbons CH2 Carbons CH3 Carbons
  • 32. Process NMR Associates Exxon FT-wax Patent
  • 33. Process NMR Associates ppm15202530354045505560 b g d e a' b' g' t-et p-et p-pr t-pr Sub-Me 4-Me Adj-Me 3-Me 2-Me t-Bu p-Bu Reg1 Reg2 Reg3 Reg4 Reg5 Reg6 a Peak X
  • 34. Process NMR Associates ppm12141618202224262830 d b' g' b t-et p-et p-pr t-pr Sub-Me 4-Me Adj-Me 3-Me 2-Me t-Bu a p-Bu Peak X Reg6Reg5Reg4Reg3
  • 35. Process NMR Associates
  • 36. Process NMR Associates Residual Catalytic Cracking – Feed-stream Analysis Analysis – Refractive Index, Distillation, Specific Gravity Calculation – Watson K-Factor Outcome: aromatic carbon number aromatic hydrogen number total hydrogen content Proposition: Detailed hydrocarbon analysis for kinetic model development
  • 37. 0 5 10 15 20 25 20 40 60 80 100 120 140 0 .05 .1 .15 .2 .25 30 35 40 45 50 55 60 0 5 10 15 20 85 90 95 100 105 110 115 120 125 Aliphatic Region CH3 CH2 Aromatic Region 60 MHz Process – 1H NMR Data 50 Samples
  • 38. Process NMR Associates 0 20 40 60 80 100 120 0 20 40 60 80 100 300 MHz - 1H NMR – RCC Feeds 0 20 40 60 80 100 120 0 20 40 60 80 100
  • 39. Aromatic Region 15 20 25 30 35 Mono Di Tri 0 50 100 150 200 250 55 60 65 70 75 80 85 90 95 100 Aliphatic Region CH3 CH2 Alpha-Protons CH+Nap
  • 40. Process NMR Associates 0 20 40 60 80 0 5 10 15 20 Parameter 1H - Type Analysis 1 Total aromatic 2 Diaromatic+ protons 3 Monoaromatic protons 4 Total olefinic 5 RHC=CH2 6 RHC=CHR 7 RHC=CH2 8 Oxygenates protons 9 Total a protons to aromatics 10 a-CH to aromatics 11 a-CH2 to aromatics 12 a-CH3 to aromatics 13 Saturates 14 Paraffinic CH 15 Paraffinic CH3 16 Paraffinic CH3 17 Substituted aromatic carbon 18 Bridgehead carbons 19 Total aromatics (wt %) 20 Mono aromatics (wt %) 21 Di+ aromatics (wt %) 22 Benzene (wt %) 23 Olefin functions (wt %) 24 Oxygenates (wt %) 25 Saturates (wt %) H-Type NMR Analysis Depicted as a “Spectrum”
  • 41. Process NMR Associates 0 50 100 150 200 0 50 100 150 200 Aromatics Aliphatics 13C NMR Data
  • 42. Process NMR Associates Aromatic Region 40 50 60 70 80 90 140 150 160 170 180 190 Aliphatic Region
  • 43. Index Carbon Type Parameters (%C Unless Otherwise Listed) 1 Ketone carbonyl carbon %c 2 Aldehyde carbonyl carbon 3 Carboxylic acids, esters and amides carbonyl carbon 4 Phenoxy carbon 5 CH2 & CH sub aromatic carbon 6 Naphthenic sub aromatic carbon 7 CH3 sub aromatic carbon 8 Half of internal aromatic carbon 9 Protonated Internal aromatic C+ 1/2 internal aromatic C 10 Protonated aromatic carbon 11 Heteroaromatic other than phenoxy carbon 12 Methine carbon 13 Methylene carbon 14 Methyl carbon 15 Total carbonyl carbon 16 Total aromatic carbon 17 Aliphatic sub aromatic carbon 18 Methyl-substituted aromatic carbon 19 CH2 & CH substituted aromatic carbon 20 Naphthenic substituted aromatic carbon 21 Internal aromatic carbon 22 Peripheral unsubstituted aromatic carbon 23 Total heteroaromatic carbon 24 Total olefinic carbon 25 Total aliphatic carbon Index Carbon Type Parameters (%C Unless Otherwise Listed) 26 Aliphatic methine carbon (CH) 27 Aliphatic methylene carbon (CH2) 28 Aliphatic methyl carbon (CH3) 29 Total paraffinic carbon 30 Paraffinic methine carbon (CH) 31 Paraffinic methylene carbon (CH2) 32 Paraffinic methyl carbon (CH3) 33 Total naphthenic carbon 34 Naphthenic methine carbon (CH) 35 Naphthenic methylene carbon (CH2) 36 Naphthenic methyl carbon (CH3) 37 Reg1 38 a' 39 Reg2 40 g 41 Reg3 42 g' 43 e 44 d 45 Reg4 46 b' 47 Reg5 48 p-Bu 49 t-Bu 50 Peak x Index Carbon Type Parameters (%C Unless Otherwise Listed) 51 b 52 2-Me 53 Aromatic a methyl carbon 54 All other-Me 55 3-Me 56 Reg7 57 p-Pr 58 t-Pr 59 4-Me 60 a 61 t-Ethyl 62 p-Ethyl 63 Linear Paraffin Structure: % Linear Paraffin/Total Paraffin 64 Waxiness : % Epsilon C/Total Paraffin 65 Branching Index: %Branching CC/Total Paraffin 66 Total Branching Content: % C Near Branching C/Total C 67 C in Branched Environment: % 1-linear paraffin structure 68 Average Straight Chain Length (C No.) 69 Methyl branching index 70 Ethyl branching Index 71 Propyl branching Index 72 Butyl branching Index 73 Total ethyl branching content 74 Total propyl branching content 75 Total butyl branching content Calculated C-Type Parameters
  • 44. Process NMR Associates 0 20 40 60 80 0 10 20 30 40 50 60 70 C-Type NMR Parameters Depicted as a “Spectrum”
  • 45. Process NMR Associates Resonance Frequency 60 MHz Proton 300 MHz Proton 75 MHz Carbon-13 Parameter 1H NMR 0.1 ppm Bin 1H NMR - 0.1 ppm Bin H-Type Spectrum 13C NMR- 1 ppm Bin C-Type Spectrum Density at 15o C 0.961 0.983 0.924 0.982 0.974 Viscosity Index - 0.951 - 0.935 - MCRT 0.940 0.952 0.727 0.931 0.875 SULPHUR 0.931 0.964 0.855 0.979 0.962 Carbon Aromaticity 0.958 0.951 0.926 0.998 0.997 HYDROGEN 0.925 0.914 0.819 0.922 0.862 Total Aromatics 0.936 0.946 0.904 0.965 0.941 Monoaromatics 0.930 0.941 0.912 0.954 0.897 Diaromatics 0.927 0.945 0.866 0.951 0.897 TriAromatics 0.941 0.911 0.862 0.939 0.863 Tetra+ aromatics 0.913 0.921 0.656 0.912 0.934 Summary of RCC Feed NMR Analysis – Correlations to Physical/Chemical Properties
  • 46. density _13c_calculated.tdf ,5 (R² = 0.980019145)density _13c_calculated.tdf ,5 (R² = 0.980019145) Actual Concentration ( C1 )Actual Concentration ( C1 ) PredictedConcentration(F6C1)PredictedConcentration(F6C1) .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 1 2 3 4 5 6 7 8 9 10 12 1415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 37 38 39 4041 42 43 44 46 4748 49 50 51 52 54 55 56 .85 .88 .91 .94 .97 .86 .89 .92 .95 .98 Variable Selection Process Reduces Number of Variables Linear Equations that Describe Density in terms of 13 Carbon Type Parameters
  • 47. 13C Parameter 1H NMR 13C NMR Total aromatic carbon 0.980 0.996 Aliphatic substituted aromatic carbon 0.962 0.999 Methyl-substituted aromatic carbon 0.970 0.994 CH2 & CH substituted aromatic carbon 0.935 0.996 Naphthenic substituted aromatic carbon 0.973 0.996 Internal aromatic carbon 0.949 0.994 Peripheral unsubstituted aromatic carbon 0.950 0.996 Total heteroaromatic carbon 0.275 0.976 Total aliphatic carbon 0.952 0.997 Aliphatic methine carbon (CH) 0.932 0.999 Aliphatic methylene carbon (CH2) 0.976 1.000 Aliphatic methyl carbon (CH3) 0.610 0.996 Total paraffinic carbon 0.984 0.995 P methine carbon (CH) 0.876 0.940 P methylene carbon (CH2) 0.987 0.998 P methyl carbon (CH3) 0.810 0.960 Total naphthenic carbon 0.964 0.989 N methine carbon (CH) 0.927 0.996 N methylene carbon (CH2) 0.957 0.987 N methyl carbon (CH3) 0.809 0.966 N methine/N methylene ratio 0.085 0.878 Mole fraction of bridgehead aromatic carbon 0.448 0.899 Aromatic carbons per aromatic group 0.697 0.895 13C Parameter Cluster number (=aromatic group number) 1H NMR 0.941 13C NMR 0.995 Aliphatic substitutions per cluster 0.087 0.906 Methyl-substitutions per cluster 0.379 0.909 CH2 & CH substitutions per cluster 0.063 0.899 Naphthenic substitutions per cluster 0.227 0.910 Heteroatoms per cluster 0.032 0.926 Naphthenic CH3 per cluster 0.449 0.906 # of naphthenic ring carbons per cluster 0.524 0.924 Naphthenic rings per cluster 0.317 0.939 # of paraffinic carbons per cluster 0.892 0.934 Average chain length of paraffinic substitutions 0.913 0.932 Linear paraffin structure 0.972 0.976 Waxiness : e/total paraffin 0.977 0.983 Branching index 0.973 0.972 Total branching content 0.964 0.972 Carbons in branched environment 0.972 0.976 Average straight chain length 0.967 0.986 Methyl branching index 0.972 0.962 Ethyl branching Index 0.945 0.945 Propyl branching Index 0.919 0.932 Butyl branching Index 0.919 0.951 Total ethyl branching content 0.946 0.946 Total propyl branching content 0.919 0.933 Total butyl branching content 0.917 0.950 Correlation of 1H and 13C NMR Spectra to 13C Derived Parameters
  • 48. Process NMR Associates Carbon AromaticityCorrletaed by1H NMR 5 10 15 20 25 30 5 10 15 20 25 30 Actual Fa (%C) PredictedFa(%C) Carbon Aromaticity Correlated to 13C Spectra 5 10 15 20 25 30 5 10 15 20 25 30 Actual Fa (%C) PredictedFa(%C) 1H and 13C NMR Correlation to Carbon Aromaticity
  • 49. Process NMR Associates 13C NMR Branching Index - 1H NMR 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 Actual Branching Index PredictedBranchingIndex 13C NMR Branching Index - 13C NMR 3 4 5 6 7 8 9 10 11 12 3 4 5 6 7 8 9 10 11 12 Actual Branching Index PredictedBranchingIndex 1H and 13C NMR Correlation to Branching Index Branching Carbons/Total Paraffinic Carbons
  • 50. 1H NMR Reaction Monitoring – Esterification of t-butanol with acetic anhydride
  • 51. CH3 CH3 CH3 O O CH3 CH3 CH3 CH3 OH OH O CH3 CH3 O O O CH3 A B C D E E B D A C
  • 52. 2.0 1.5 1.0 ppm Esterification of t-BuOH Integral Graph And Integration Plot AcAn Acetic Acid Ac-Ester
  • 53. 1H NMR Zreaction Monitoring –propanol esterified with acetic anhydride
  • 54. Sucrose a-glucose 1H NMR – Sucrose Hydrolysis
  • 55. Microreactor Process Monitoring – 1H NMR – Reaction: Cyclohexene -- Cyclohexane
  • 56. At-Line Analyzer 1H NMR Observation of Alkene Saturation Starting Material and Product Dissolved in CDCl3 Comparison of 60 MHz and 300 MHz
  • 57. Process NMR Associates
  • 58. Process NMR Associates
  • 59. Process NMR Associates
  • 60. Process NMR Associates Acknowledgements Paul Giammatteo – PNA Tal Cohen – ASPECT AI and Modcon Cosa-Xentaur