Honors Biology Macromolecules

3,272 views
2,970 views

Published on

Published in: Education, Technology, Business
0 Comments
3 Likes
Statistics
Notes
  • Be the first to comment

No Downloads
Views
Total views
3,272
On SlideShare
0
From Embeds
0
Number of Embeds
3
Actions
Shares
0
Downloads
315
Comments
0
Likes
3
Embeds 0
No embeds

No notes for slide
  • Most macromolecules are polymers • build: condensation (dehydration) reaction • breakdown: hydrolysis An immense variety of polymers can be built from a small set of monomers
  • Animals do not have the enzyme to digest cellulose. We need the help of bacteria living in our intestines.
  • Cross-linking between polysaccharide chains = rigid & hard to digest The digestion of cellulose governs the life strategy of herbivores. Either you do it really well and you’re a cow or an elephant or a horse (spend a long time digesting a lot of food with a little help from some microbes & have to walk around slowly for a long time carrying a lot of food in your stomach) Or you do it inefficiently and have to supplement your diet with simple sugars, like fruit and nectar, and you’re a gorilla.
  • Sickle cell anemia: 1 DNA letter changes 1 amino acid = serious disease Hemoglobin mutation: bends red blood cells out of shape & they clog your veins.
  • It’s a helix or B sheet within a single region. Can have both in one protein but a specific region is one or another
  • How the whole thing holds together
  • Structure equals function wonderfully illustrated by proteins Collagen is just like rope -- enables your skin to be strong and flexible.
  • sequence determines structure and… structure determines function. Change the sequence & that changes the structure which changes the function.
  • It’s a helix or B sheet within a single region. Can have both in one protein but a specific region is one or another
  • when cells divide, they must duplicate DNA exactly for the new “daughter” cells Why is this a good system?
  • The greatest understatement in biology!
  • Honors Biology Macromolecules

    1. 1. The Chemistry of Life What are living creatures made of? Why do we have to eat?
    2. 2. <ul><li>96% of living organisms is made of: </li></ul><ul><ul><li>carbon (C) </li></ul></ul><ul><ul><li>oxygen (O) </li></ul></ul><ul><ul><li>hydrogen (H) </li></ul></ul><ul><ul><li>nitrogen (N) </li></ul></ul>Elements of Life
    3. 3. Molecules of Life <ul><li>Put C, H, O, N together in different ways to build living organisms </li></ul><ul><li>What are bodies made of? </li></ul><ul><ul><li>carbohydrates </li></ul></ul><ul><ul><ul><li>sugars & starches </li></ul></ul></ul><ul><ul><li>proteins </li></ul></ul><ul><ul><li>fats (lipids) </li></ul></ul><ul><ul><li>nucleic acids </li></ul></ul><ul><ul><ul><li>DNA, RNA </li></ul></ul></ul>
    4. 4. Why do we eat? <ul><li>We eat to take in more of these chemicals </li></ul><ul><ul><li>Food for building materials </li></ul></ul><ul><ul><ul><li>to make more of us (cells) </li></ul></ul></ul><ul><ul><ul><li>for growth </li></ul></ul></ul><ul><ul><ul><li>for repair </li></ul></ul></ul><ul><ul><li>Food to make energy </li></ul></ul><ul><ul><ul><li>calories </li></ul></ul></ul><ul><ul><ul><li>to make ATP </li></ul></ul></ul>ATP
    5. 5. What do we need to eat? <ul><li>Foods to give you more building blocks & more energy </li></ul><ul><ul><ul><li>for building & running bodies </li></ul></ul></ul><ul><ul><li>carbohydrates </li></ul></ul><ul><ul><li>proteins </li></ul></ul><ul><ul><li>fats </li></ul></ul><ul><ul><li>nucleic acids </li></ul></ul><ul><ul><li>vitamins </li></ul></ul><ul><ul><li>minerals, salts </li></ul></ul><ul><ul><li>water </li></ul></ul>
    6. 6. <ul><li>Water </li></ul><ul><ul><li>65% of your body is H 2 O </li></ul></ul><ul><ul><li>water is inorganic </li></ul></ul><ul><ul><ul><li>doesn’t contain carbon </li></ul></ul></ul><ul><li>Rest of you is made of carbon molecules </li></ul><ul><ul><li>organic molecules </li></ul></ul><ul><ul><ul><li>carbohydrates </li></ul></ul></ul><ul><ul><ul><li>proteins </li></ul></ul></ul><ul><ul><ul><li>fats </li></ul></ul></ul><ul><ul><ul><li>nucleic acids </li></ul></ul></ul>Don’t forget water
    7. 7. How do we make these molecules? <ul><li>We build them! </li></ul>2006-2007
    8. 8. Building large molecules of life <ul><li>Chain together smaller molecules </li></ul><ul><ul><li>building block molecules = monomers </li></ul></ul><ul><li>Big molecules built from little molecules </li></ul><ul><ul><li>polymers </li></ul></ul>
    9. 9. <ul><li>Small molecules = building blocks </li></ul><ul><li>Bond them together = polymers </li></ul>Building large organic molecules
    10. 10. Building important polymers sugar – sugar – sugar – sugar – sugar – sugar nucleotide – nucleotide – nucleotide – nucleotide Carbohydrates = built from sugars Proteins = built from amino acids Nucleic acids (DNA) = built from nucleotides amino acid amino acid – amino acid – amino acid – amino acid – amino acid –
    11. 11. How to build large molecules <ul><li>Synthesis </li></ul><ul><ul><li>building bigger molecules from smaller molecules </li></ul></ul><ul><ul><li>building cells & bodies </li></ul></ul><ul><ul><ul><li>repair </li></ul></ul></ul><ul><ul><ul><li>growth </li></ul></ul></ul><ul><ul><ul><li>reproduction </li></ul></ul></ul>+ ATP
    12. 12. How to build a polymer <ul><li>Synthesis </li></ul><ul><ul><li>joins monomers by “taking” H 2 O out </li></ul></ul><ul><ul><ul><li>one monomer donates OH – </li></ul></ul></ul><ul><ul><ul><li>other monomer donates H + </li></ul></ul></ul><ul><ul><ul><li>together these form H 2 O </li></ul></ul></ul><ul><ul><li>requires energy & enzymes </li></ul></ul>Dehydration synthesis Condensation reaction H 2 O HO HO H H H HO enzyme
    13. 13. How to take large molecules apart <ul><li>Digestion </li></ul><ul><ul><li>taking big molecules apart </li></ul></ul><ul><ul><li>getting raw materials </li></ul></ul><ul><ul><ul><li>for synthesis & growth </li></ul></ul></ul><ul><ul><li>making energy (ATP) </li></ul></ul><ul><ul><ul><li>for synthesis, growth & everyday functions </li></ul></ul></ul>+ ATP
    14. 14. How to break down a polymer <ul><li>Digestion </li></ul><ul><ul><li>use H 2 O to breakdown polymers </li></ul></ul><ul><ul><ul><li>reverse of dehydration synthesis </li></ul></ul></ul><ul><ul><ul><li>break off one monomer at a time </li></ul></ul></ul><ul><ul><ul><li>H 2 O is split into H + and OH – </li></ul></ul></ul><ul><ul><ul><ul><li>H + & OH – attach to ends </li></ul></ul></ul></ul><ul><ul><li>requires enzymes </li></ul></ul><ul><ul><li>releases energy </li></ul></ul>Hydrolysis Digestion H 2 O HO H HO H HO H enzyme
    15. 15. Example of digestion <ul><li>Starch is digested to glucose </li></ul>starch glucose ATP ATP ATP ATP ATP ATP ATP
    16. 16. Example of synthesis <ul><li>amino acids = building block </li></ul><ul><li>protein = polymer </li></ul>amino acids protein <ul><li>Proteins are synthesized by bonding amino acids </li></ul>
    17. 17. Carbohydrates
    18. 18. Carbohydrates: Energy molecules OH OH H H HO CH 2 OH H H H OH O
    19. 19. Carbohydrates <ul><li>Building block molecules = </li></ul>sugar - sugar - sugar - sugar - sugar sugars sugar sugar sugar sugar sugar sugar sugar sugar
    20. 20. Carbohydrates <ul><li>Function: </li></ul><ul><ul><li>quick energy </li></ul></ul><ul><ul><li>energy storage </li></ul></ul><ul><ul><li>structure </li></ul></ul><ul><ul><ul><li>cell wall in plants </li></ul></ul></ul><ul><li>Examples </li></ul><ul><ul><li>sugars </li></ul></ul><ul><ul><li>starches </li></ul></ul><ul><ul><li>cellulose (cell wall) </li></ul></ul>glucose C 6 H 12 O 6 starch sucrose
    21. 21. Sugars = building blocks <ul><li>Names for sugars usually end in </li></ul><ul><ul><li>glucose </li></ul></ul><ul><ul><li>fructose </li></ul></ul><ul><ul><li>sucrose </li></ul></ul><ul><ul><li>maltose </li></ul></ul>- ose OH OH H H HO CH 2 OH H H H OH O glucose C 6 H 12 O 6 sucrose fructose maltose
    22. 22. Building carbohydrates <ul><li>Synthesis </li></ul>| glucose | glucose 1 sugar = monosaccharide 2 sugars = disaccharide | maltose mono = one saccharide = sugar di = two
    23. 23. Building carbohydrates <ul><li>Synthesis </li></ul>| fructose | glucose 1 sugar = monosaccharide | sucrose (table sugar) 2 sugars = disaccharide How sweet it is!
    24. 24. BIG carbohydrates <ul><li>Polysaccharides </li></ul><ul><ul><li>large carbohydrates </li></ul></ul><ul><ul><ul><li>starch </li></ul></ul></ul><ul><ul><ul><ul><li>energy storage in plants </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>potatoes </li></ul></ul></ul></ul></ul><ul><ul><ul><li>glycogen </li></ul></ul></ul><ul><ul><ul><ul><li>energy storage in animals </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>in liver & muscles </li></ul></ul></ul></ul></ul><ul><ul><ul><li>cellulose </li></ul></ul></ul><ul><ul><ul><ul><li>structure in plants </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>cell walls </li></ul></ul></ul></ul></ul><ul><ul><ul><li>chitin </li></ul></ul></ul><ul><ul><ul><ul><li>structure in arthropods & fungi </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>exoskeleton </li></ul></ul></ul></ul></ul>poly = many
    25. 25. Building BIG carbohydrates glucose + glucose + glucose… = starch (plant) glycogen (animal) energy storage polysaccharide
    26. 26. Digesting starch vs. cellulose starch easy to digest cellulose hard to digest enzyme enzyme
    27. 27. Cellulose <ul><li>Cell walls in plants </li></ul><ul><ul><li>herbivores can digest cellulose well </li></ul></ul><ul><ul><li>most carnivores cannot digest cellulose </li></ul></ul><ul><ul><ul><li>that’s why they eat meat to get their energy & nutrients </li></ul></ul></ul><ul><ul><ul><li>cellulose = roughage </li></ul></ul></ul><ul><ul><ul><ul><li>stays undigested </li></ul></ul></ul></ul><ul><ul><ul><ul><li>keeps material moving in your intestines </li></ul></ul></ul></ul>
    28. 28. Proteins
    29. 29. Proteins: Multipurpose molecules
    30. 30. Proteins <ul><li>Examples </li></ul><ul><ul><li>muscle </li></ul></ul><ul><ul><li>skin, hair, fingernails, claws </li></ul></ul><ul><ul><ul><li>collagen, keratin </li></ul></ul></ul><ul><ul><li>pepsin </li></ul></ul><ul><ul><ul><li>digestive enzyme in stomach </li></ul></ul></ul><ul><ul><li>insulin </li></ul></ul><ul><ul><ul><li>hormone that controls blood sugar levels </li></ul></ul></ul>collagen (skin) insulin pepsin
    31. 31. Proteins <ul><li>Function: </li></ul><ul><ul><li>many, many functions </li></ul></ul><ul><ul><ul><li>hormones </li></ul></ul></ul><ul><ul><ul><ul><li>signals from one body system to another </li></ul></ul></ul></ul><ul><ul><ul><ul><li>insulin </li></ul></ul></ul></ul><ul><ul><ul><li>movement </li></ul></ul></ul><ul><ul><ul><ul><li>muscle </li></ul></ul></ul></ul><ul><ul><ul><li>immune system </li></ul></ul></ul><ul><ul><ul><ul><li>protect against germs </li></ul></ul></ul></ul><ul><ul><ul><li>enzymes </li></ul></ul></ul><ul><ul><ul><ul><li>help chemical reactions </li></ul></ul></ul></ul>
    32. 32. Proteins <ul><li>Building block = </li></ul>variable group amino acids <ul><li>20 different amino acids </li></ul>amino acid amino acid – amino acid – amino acid – amino acid – — N — H H H | — C— | C—OH || O There’s 20 of us… like 20 different letters in an alphabet! Can make lots of different words
    33. 33. Amino acid chains <ul><li>Proteins </li></ul><ul><ul><li>amino acids chained into a polymer (or polypeptide) </li></ul></ul><ul><li>Each amino acid is different </li></ul><ul><li>some “like” water & dissolve in it </li></ul><ul><li>some “fear” water & separate from it </li></ul>amino acid amino acid amino acid amino acid amino acid
    34. 34. For proteins: SHAPE matters ! <ul><li>Proteins fold & twist into 3-D shape </li></ul><ul><ul><li>that’s what happens in the cell! </li></ul></ul><ul><li>Different shapes = different jobs </li></ul>pepsin hemoglobin growth hormone collagen
    35. 35. Primary (1°) structure <ul><li>Order of amino acids in chain </li></ul><ul><ul><li>slight change in amino acid sequence can affect protein’s structure & its function </li></ul></ul><ul><ul><ul><li>even just one amino acid change can make all the difference! </li></ul></ul></ul>lysozyme: enzyme in tears & mucus that kills bacteria
    36. 36. Secondary (2°) structure <ul><li>“ Local folding ” </li></ul><ul><ul><li>folding along short sections of polypeptide </li></ul></ul><ul><ul><li>interactions between adjacent amino acids </li></ul></ul><ul><ul><li>forms sections of 3-D structure </li></ul></ul>
    37. 37. Tertiary (3°) structure <ul><li>“ Whole molecule folding ” </li></ul><ul><ul><li>interactions between distant amino acids </li></ul></ul>
    38. 38. Quaternary (4°) structure <ul><li>More than one polypeptide chain bonded together </li></ul><ul><ul><li>only then does polypeptide become functional protein </li></ul></ul>hemoglobin collagen = skin & tendons
    39. 39. Protein structure (review) amino acid sequence peptide bonds 1° determined by DNA R groups short 3D segments R groups whole molecule folding 3° multiple polypeptides 4° 2°
    40. 40. It’s SHAPE that matters! <ul><li>Proteins do their jobs, because of their shape </li></ul><ul><li>Unfolding a protein destroys its shape </li></ul><ul><ul><li>wrong shape = can’t do its job </li></ul></ul><ul><ul><li>unfolding proteins = “denature” </li></ul></ul><ul><ul><ul><li>temperature </li></ul></ul></ul><ul><ul><ul><li>pH (acidity) </li></ul></ul></ul>folded unfolded “denatured” In Biology, it’s not the size, it’s the SHAPE that matters!
    41. 41. Lipids: Fats & Oils
    42. 42. <ul><li>Lipids </li></ul>Concentrated energy molecules
    43. 43. Lipids <ul><li>Examples </li></ul><ul><ul><li>fats </li></ul></ul><ul><ul><li>oils </li></ul></ul><ul><ul><li>waxes </li></ul></ul><ul><ul><li>hormones </li></ul></ul><ul><ul><ul><li>sex hormones </li></ul></ul></ul><ul><ul><ul><ul><li>testosterone (male) </li></ul></ul></ul></ul><ul><ul><ul><ul><li>estrogen (female) </li></ul></ul></ul></ul>
    44. 44. Lipids <ul><li>Function: </li></ul><ul><ul><li>energy storage </li></ul></ul><ul><ul><ul><li>very concentrated </li></ul></ul></ul><ul><ul><ul><li>twice the energy as carbohydrates! </li></ul></ul></ul><ul><ul><li>cell membrane </li></ul></ul><ul><ul><li>cushions organs </li></ul></ul><ul><ul><li>insulates body </li></ul></ul><ul><ul><ul><li>think whale blubber! </li></ul></ul></ul>
    45. 45. Structure of Fat not a chain (polymer) = just a “big fat molecule”
    46. 46. Saturated fats <ul><li>Most animal fats </li></ul><ul><ul><li>solid at room temperature </li></ul></ul><ul><li>Limit the amount in your diet </li></ul><ul><ul><li>contributes to heart disease </li></ul></ul><ul><ul><li>deposits in arteries </li></ul></ul>
    47. 47. Unsaturated fats <ul><li>Plant, vegetable & fish fats </li></ul><ul><ul><li>liquid at room temperature </li></ul></ul><ul><ul><ul><li>the fat molecules don’t stack tightly together </li></ul></ul></ul><ul><li>Better choice in your diet </li></ul>
    48. 48. Saturated vs. unsaturated saturated unsaturated 
    49. 49. Other lipids in biology <ul><li>Cholesterol </li></ul><ul><ul><li>good molecule in cell membranes </li></ul></ul><ul><ul><li>make hormones from it </li></ul></ul><ul><ul><ul><li>including sex hormones </li></ul></ul></ul><ul><ul><li>but too much cholesterol in blood may lead to heart disease </li></ul></ul>
    50. 50. Other lipids in biology <ul><li>Cell membranes are made out of lipids </li></ul><ul><ul><li>phospholipids </li></ul></ul><ul><ul><li>heads are on the outside touching water </li></ul></ul><ul><ul><ul><li>“like” water </li></ul></ul></ul><ul><ul><li>tails are on inside away from water </li></ul></ul><ul><ul><ul><li>“scared” of water </li></ul></ul></ul><ul><ul><li>forms a barrier between the cell & the outside </li></ul></ul>
    51. 51. Nucleic Acids: Information molecules
    52. 52. Nucleic Acids <ul><li>Examples </li></ul><ul><ul><li>DNA </li></ul></ul><ul><ul><ul><li>DeoxyriboNucleic Acid </li></ul></ul></ul><ul><ul><li>RNA </li></ul></ul><ul><ul><ul><li>RiboNucleic Acid </li></ul></ul></ul>RNA
    53. 53. Nucleic Acids <ul><li>Function: </li></ul><ul><ul><li>genetic material </li></ul></ul><ul><ul><ul><li>stores information </li></ul></ul></ul><ul><ul><ul><ul><li>genes </li></ul></ul></ul></ul><ul><ul><ul><ul><li>blueprint for building proteins </li></ul></ul></ul></ul><ul><ul><ul><ul><ul><li>DNA -> RNA -> proteins </li></ul></ul></ul></ul></ul><ul><ul><ul><li>transfers information </li></ul></ul></ul><ul><ul><ul><ul><li>blueprint for new cells </li></ul></ul></ul></ul><ul><ul><ul><ul><li>blueprint for next generation </li></ul></ul></ul></ul>DNA proteins
    54. 54. Nucleic acids <ul><li>Building block = </li></ul>nucleotides <ul><li>5 different nucleotides </li></ul><ul><li>different nitrogen bases </li></ul><ul><li>A, T, C, G, U </li></ul>nucleotide – nucleotide – nucleotide – nucleotide phosphate sugar N base Nitrogen bases I’m the A,T,C,G or U part!
    55. 55. Nucleotide chains <ul><li>Nucleic acids </li></ul><ul><ul><li>nucleotides chained into a polymer </li></ul></ul><ul><ul><ul><li>DNA </li></ul></ul></ul><ul><ul><ul><ul><li>double-sided </li></ul></ul></ul></ul><ul><ul><ul><ul><li>double helix </li></ul></ul></ul></ul><ul><ul><ul><ul><li>A, C, G, T </li></ul></ul></ul></ul><ul><ul><ul><li>RNA </li></ul></ul></ul><ul><ul><ul><ul><li>single-sided </li></ul></ul></ul></ul><ul><ul><ul><ul><li>A, C, G, U </li></ul></ul></ul></ul>phosphate sugar N base phosphate sugar N base phosphate sugar N base phosphate sugar N base strong bonds RNA
    56. 56. DNA <ul><li>Double strand twists into a double helix </li></ul><ul><ul><li>weak bonds between nitrogen bases join the 2 strands </li></ul></ul><ul><ul><ul><li>A pairs with T </li></ul></ul></ul><ul><ul><ul><ul><li>A :: T </li></ul></ul></ul></ul><ul><ul><ul><li>C pairs with G </li></ul></ul></ul><ul><ul><ul><ul><li>C :: G </li></ul></ul></ul></ul><ul><ul><li>the two strands can separate when our cells need to make copies of it </li></ul></ul>weak bonds
    57. 57. Copying DNA <ul><li>Replication </li></ul><ul><ul><li>copy DNA </li></ul></ul><ul><ul><li>2 strands of DNA helix are complementary </li></ul></ul><ul><ul><ul><li>they are matching </li></ul></ul></ul><ul><ul><ul><li>have one, can build other </li></ul></ul></ul><ul><ul><ul><li>have one, can rebuild the whole </li></ul></ul></ul>
    58. 58. <ul><li>Copying DNA </li></ul><ul><ul><li>pairing of the bases allows each strand to serve as a pattern for a new strand </li></ul></ul>Newly copied strands of DNA DNA replication

    ×