Your SlideShare is downloading. ×
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Chapter 9 (Cellular Respiration - Complete)
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Chapter 9 (Cellular Respiration - Complete)

1,882

Published on

Complete look at ce

Complete look at ce

Published in: Technology, Business
1 Comment
0 Likes
Statistics
Notes
  • Be the first to like this

No Downloads
Views
Total Views
1,882
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
82
Comments
1
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Cellular Respiration Harvesting Chemical EnergyAP Biology 2006-2007 1
  • 2. Cellular Respiration Harvesting Chemical Energy ATPAP Biology 2006-2007 1
  • 3. AP Biology 2006-2007 2
  • 4. What’s the point?AP Biology 2006-2007 2
  • 5. What’s the point? The point is to make ATP! ATPAP Biology 2006-2007 2
  • 6. Harvesting stored energyAP Biology 3
  • 7. Harvesting stored energy § Energy is stored in organic molecules u carbohydrates, fats, proteinsAP Biology 3
  • 8. Harvesting stored energy § Energy is stored in organic molecules u carbohydrates, fats, proteins § Heterotrophs eat these organic molecules → food u digest organic molecules to get… § raw materials for synthesis § fuels for energy w controlled release of energy w “burning” fuels in a series of step-by-step enzyme-controlled reactionsAP Biology 3
  • 9. Harvesting stored energyAP Biology 4
  • 10. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATPAP Biology 4
  • 11. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATPrespiration glucose + oxygen → energy + water + carbon dioxideAP Biology 4
  • 12. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATPrespiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2AP Biology 4
  • 13. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATPrespiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heatAP Biology 4
  • 14. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy by burning fuels in one step fuel AP Biologycarbohydrates) 4
  • 15. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy by burning fuels in one step O2 fuel AP Biologycarbohydrates) 4
  • 16. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy by burning fuels in one step O2 fuel AP Biologycarbohydrates) 4
  • 17. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy by burning fuels in one step O2 fuel AP Biologycarbohydrates) CO2 + H2O + heat 4
  • 18. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy RESPIRATION = making ATP (& some heat) by burning fuels in one step by burning fuels in many small steps O2 fuel AP Biologycarbohydrates) CO2 + H2O + heat 4
  • 19. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy RESPIRATION = making ATP (& some heat) by burning fuels in one step by burning fuels in many small steps ATP O2 glucose fuel AP Biologycarbohydrates) CO2 + H2O + heat 4
  • 20. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy RESPIRATION = making ATP (& some heat) by burning fuels in one step by burning fuels in many small steps ATP O2 glucose O2 fuel AP Biologycarbohydrates) CO2 + H2O + heat 4
  • 21. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy RESPIRATION = making ATP (& some heat) by burning fuels in one step by burning fuels in many small steps enzymes ATP O2 glucose O2 fuel AP Biologycarbohydrates) CO2 + H2O + heat 4
  • 22. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy RESPIRATION = making ATP (& some heat) by burning fuels in one step by burning fuels in many small steps ATP enzymes ATP O2 glucose O2 fuel AP Biologycarbohydrates) CO2 + H2O + heat 4
  • 23. Harvesting stored energy § Glucose is the model u catabolism of glucose to produce ATP respiration glucose + oxygen → energy + water + carbon dioxide C6H12O6 + 6O2 → ATP + 6H2O + 6CO2 + heat COMBUSTION = making a lot of heat energy RESPIRATION = making ATP (& some heat) by burning fuels in one step by burning fuels in many small steps ATP enzymes ATP O2 glucose O2 fuel AP Biologycarbohydrates) CO2 + H2O + heat CO2 + H2O + ATP (+ heat) 4
  • 24. How do we harvest energy from fuels?AP Biology 5
  • 25. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATPAP Biology 5
  • 26. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP + +AP Biology 5
  • 27. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP + +AP Biology e- 5
  • 28. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- + +AP Biology e- 5
  • 29. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- + +AP Biology e- 5
  • 30. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- + + e-AP Biology e- 5
  • 31. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- + + + e-AP Biology e- 5
  • 32. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- + + + e- e-AP Biology e- 5
  • 33. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- + – + + e- e-AP Biology e- 5
  • 34. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- oxidized + – + + e- e-AP Biology e- 5
  • 35. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- oxidized reduced + – + + e- e-AP Biology e- 5
  • 36. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- oxidized reduced + – + + e- e- oxidation reductionAP Biology e- 5
  • 37. How do we harvest energy from fuels? § Digest large molecules into smaller ones u break bonds & move electrons from one molecule to another § as electrons move they “carry energy” with them § that energy is stored in another bond, released as heat or harvested to make ATP loses e- gains e- oxidized reduced + – + + e- e- oxidation reductionAP Biology e- redox 5
  • 38. How do we move electrons in biology?AP Biology 6
  • 39. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells § electrons move as part of H atom § move H = move electronsAP Biology 6
  • 40. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electronsAP Biology 6
  • 41. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction HAP Biology 6
  • 42. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction H C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology 6
  • 43. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction H C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology 6
  • 44. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction H oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology 6
  • 45. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction H oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology 6
  • 46. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction H oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology reduction 6
  • 47. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction H oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology H reduction 6
  • 48. How do we move electrons in biology? § Moving electrons in living systems u electrons cannot move alone in cells e § electrons move as part of H atom p § move H = move electrons loses e- gains e- oxidized reduced + – + + H oxidation reduction H oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology H e- reduction 6
  • 49. Coupling oxidation & reduction oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology reduction 7
  • 50. Coupling oxidation & reduction § REDOX reactions in respiration u release energy as breakdown organic molecules § break C-C bonds § strip off electrons from C-H bonds by removing H atoms w C6H12O6 → CO2 = the fuel has been oxidized § electrons attracted to more electronegative atoms w in biology, the most electronegative atom? w O2 → H2O = oxygen has been reduced u couple REDOX reactions & use the released energy to synthesize ATP oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology reduction 7
  • 51. Coupling oxidation & reduction § REDOX reactions in respiration u release energy as breakdown organic molecules § break C-C bonds § strip off electrons from C-H bonds by removing H atoms w C6H12O6 → CO2 = the fuel has been oxidized § electrons attracted to more electronegative atoms w in biology, the most electronegative atom? w O2 → H2O = oxygen has been reduced O2 u couple REDOX reactions & use the released energy to synthesize ATP oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATPAP Biology reduction 7
  • 52. Oxidation & reduction § Reduction oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATP reductionAP Biology 8
  • 53. Oxidation & reduction § Oxidation § Reduction u adding O uremoving O u removing H uadding H u loss of electrons ugain of electrons u releases energy ustores energy u exergonic uendergonic oxidation C6H12O6 + 6O2 → 6CO2 + 6H2O + ATP reductionAP Biology 8
  • 54. Moving electrons in respirationNAD+ O HnicotinamideVitamin B3 C NH2niacin N+ O– O– P –Ophosphates O O– adenine O– P –O O AP Biology ribose sugar 9
  • 55. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O HnicotinamideVitamin B3 C NH2niacin N+ O– O– P –Ophosphates O O– adenine O– P –O O AP Biology ribose sugar 9
  • 56. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O HnicotinamideVitamin B3 C NH2niacin N+ How efficient! O– Build once, O– P –O use many waysphosphates O O– adenine O– P –O O AP Biology ribose sugar 9
  • 57. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O HnicotinamideVitamin B3 C NH2niacin N+ O– O– P –Ophosphates O O– adenine O– P –O O AP Biology ribose sugar 9
  • 58. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O HnicotinamideVitamin B3 C NH2niacin N+ O– + H O– P –Ophosphates O O– adenine O– P –O O AP Biology ribose sugar 9
  • 59. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O HnicotinamideVitamin B3 C NH2niacin N+ reduction O– + H O– P –Ophosphates O O– adenine O– P –O O AP Biology ribose sugar 9
  • 60. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O O H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O O AP Biology ribose sugar 9
  • 61. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O O H H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O O AP Biology ribose sugar 9
  • 62. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O NADH O H H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O O AP Biology ribose sugar 9
  • 63. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O NADH O H H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O carries electrons as a O AP Biology ribose sugar reduced molecule 9
  • 64. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) u FAD+2 → FADH (reduced) 2NAD+ O NADH O H H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O carries electrons as a O AP Biology ribose sugar reduced molecule 9
  • 65. Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) reducing power! u FAD+2 → FADH (reduced) 2NAD+ O NADH O H H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O carries electrons as a O AP Biology ribose sugar reduced molecule 9
  • 66. like $$ in the bank Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) reducing power! u FAD+2 → FADH (reduced) 2NAD+ O NADH O H H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O carries electrons as a O AP Biology ribose sugar reduced molecule 9
  • 67. like $$ in the bank Moving electrons in respiration § Electron carriers move electrons by shuttling H atoms around u NAD+ → NADH (reduced) reducing power! u FAD+2 → FADH (reduced) 2NAD+ O NADH O H H HnicotinamideVitamin B3 C NH2 C NH2niacin N+ reduction N+ O– + H O– O– P –O oxidation O– P –Ophosphates O O O– adenine O– O– P –O O– P –O O carries electrons as a O AP Biology ribose sugar reduced molecule 9
  • 68. Overview of cellular respirationAP Biology 10
  • 69. Overview of cellular respiration § 4 metabolic stages u Anaerobic respiration 1. Glycolysis w respiration without O2 w in cytosol u Aerobic respiration w respiration using O2 w in mitochondria 2. Pyruvate oxidation 3. Krebs cycle 4. Electron transport chain C H O6 +AP Biology 6 12 6O2 → ATP + 6H2O + 6CO2 10
  • 70. Overview of cellular respiration § 4 metabolic stages u Anaerobic respiration 1. Glycolysis w respiration without O2 w in cytosol u Aerobic respiration w respiration using O2 w in mitochondria 2. Pyruvate oxidation 3. Krebs cycle 4. Electron transport chain C H O6 +AP Biology 6 12 6O2 → ATP + 6H2O + 6CO2 (+ heat) 10
  • 71. AP Biology 2006-2007 11
  • 72. What’s the point?AP Biology 2006-2007 11
  • 73. What’s the point? The point is to make ATP! ATPAP Biology 2006-2007 11
  • 74. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+ H+AP Biology 12
  • 75. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase enzyme u H+ flows through it § conformational changes § bond Pi to ADP to make ATP u set up a H+ gradient § allow the H+ to flow down concentration gradient through ATP synthase § ADP + Pi → ATP H+AP Biology 12
  • 76. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase enzyme u H+ flows through it § conformational changes § bond Pi to ADP to make ATP u set up a H+ gradient § allow the H+ to flow down concentration gradient ADP through ATP synthase § ADP + Pi → ATP H+AP Biology 12
  • 77. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase enzyme u H+ flows through it § conformational changes § bond Pi to ADP to make ATP u set up a H+ gradient § allow the H+ to flow down concentration gradient ADP + P through ATP synthase § ADP + Pi → ATP H+AP Biology 12
  • 78. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase enzyme u H+ flows through it § conformational changes § bond Pi to ADP to make ATP u set up a H+ gradient § allow the H+ to flow down concentration gradient ADP + P through ATP synthase § ADP + Pi → ATP ATP H+AP Biology 12
  • 79. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase enzyme u H+ flows through it § conformational changes § bond Pi to ADP to make ATP u set up a H+ gradient § allow the H+ to flow down concentration gradient ADP + P through ATP synthase § ADP + Pi → ATP ATP H+APBut… Biology How is the proton (H+) gradient formed? 12
  • 80. H+ H+ H+ H+ H+ H+ H+ H+ ADP + P ATP H+AP Biology 2006-2007 13
  • 81. H+ Got to wait until H+ H+ H+ H+ the sequel! H+ H+ H+ Got the Energy? Ask Questions! ADP + P ATP H+AP Biology 2006-2007 13
  • 82. Cellular Respiration Stage 1: GlycolysisAP Biology 2006-2007 14
  • 83. Cellular Respiration Stage 1: GlycolysisAP Biology 2006-2007 14
  • 84. AP Biology 2006-2007 15
  • 85. What’s the point?AP Biology 2006-2007 15
  • 86. What’s the point? The point is to make ATP! ATPAP Biology 2006-2007 15
  • 87. Glycolysis § Breaking down glucose u “glyco – lysis” (splitting sugar) u ancient pathway which harvests energy § where energy transfer first evolved § transfer energy from organic molecules to ATP § still is starting point for ALL cellular respiration u but it’s inefficient § generate only 2 ATP for every 1 glucose u occurs in cytosolAP Biology 16
  • 88. Glycolysis § Breaking down glucose u “glyco – lysis” (splitting sugar) glucose → → → → → pyruvate 6C 2x 3C u ancient pathway which harvests energy § where energy transfer first evolved § transfer energy from organic molecules to ATP § still is starting point for ALL cellular respiration u but it’s inefficient § generate only 2 ATP for every 1 glucose u occurs in cytosolAP Biology 16
  • 89. Glycolysis § Breaking down glucose u “glyco – lysis” (splitting sugar) glucose → → → → → pyruvate 6C 2x 3CAP Biology 16
  • 90. Glycolysis § Breaking down glucose u “glyco – lysis” (splitting sugar) glucose → → → → → pyruvate 6C 2x 3C u ancient pathway which harvests energy § where energy transfer first evolved § transfer energy from organic molecules to ATP § still is starting point for ALL cellular respiration u but it’s inefficient § generate only 2 ATP for every 1 glucose u occurs in cytosolAP Biology 16
  • 91. Glycolysis § Breaking down glucose u “glyco – lysis” (splitting sugar) glucose → → → → → pyruvate 6C 2x 3C u ancient pathway which harvests energy § where energy transfer first evolved § transfer energy from organic molecules to ATP § still is starting point for ALL cellular respiration u but it’s inefficient § generate only 2 ATP for every 1 glucose u occurs in cytosol That’s not enoughAP Biology ATP for me! 16
  • 92. Glycolysis § Breaking down glucose u “glyco – lysis” (splitting sugar) In the cytosol? glucose → → → → → pyruvate Why does that make 6C 2x 3C evolutionary sense? u ancient pathway which harvests energy § where energy transfer first evolved § transfer energy from organic molecules to ATP § still is starting point for ALL cellular respiration u but it’s inefficient § generate only 2 ATP for every 1 glucose u occurs in cytosol That’s not enoughAP Biology ATP for me! 16
  • 93. Evolutionary perspectiveAP Biology 17
  • 94. Evolutionary perspective § Prokaryotes u first cells had no organellesAP Biology 17
  • 95. Evolutionary perspective § Prokaryotes u first cells had no organelles § Anaerobic atmosphere u life on Earth first evolved without free oxygen (O2) in atmosphere u energy had to be captured from organic molecules in absence of O2AP Biology 17
  • 96. Evolutionary perspective § Prokaryotes u first cells had no organelles § Anaerobic atmosphere u life on Earth first evolved without free oxygen (O2) in atmosphere u energy had to be captured from organic molecules in absence of O2 § Prokaryotes that evolved glycolysis are ancestors of all modern life u ALL cells still utilize glycolysisAP Biology 17
  • 97. Evolutionary perspective Enzymes § Prokaryotes of glycolysis are u first cells had no organelles “well-conserved” § Anaerobic atmosphere u life on Earth first evolved without free oxygen (O2) in atmosphere u energy had to be captured from organic molecules in absence of O2 § Prokaryotes that evolved glycolysis are ancestors of all modern life u ALL cells still utilize glycolysisAP Biology 17
  • 98. Evolutionary perspective Enzymes § Prokaryotes of glycolysis are u first cells had no organelles “well-conserved” § Anaerobic atmosphere u life on Earth first evolved without free oxygen (O2) in atmosphere u energy had to be captured from organic molecules in absence of O2 § Prokaryotes that evolved glycolysis are ancestors of all modern life u ALL cells still utilize glycolysis You mean we’re related? Do I have to invite them over forAP Biology the holidays? 17
  • 99. glucose Overview C-C-C-C-C-CAP Biology 18
  • 100. glucose Overview C-C-C-C-C-C10 reactionsu convert glucose (6C) to 2 pyruvate (3C)u produces: 4 ATP & 2 NADHu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 101. glucose Overview C-C-C-C-C-C10 reactionsu convert glucose (6C) to 2 pyruvate (3C)u produces: 4 ATP & 2 NADHu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 102. glucose Overview C-C-C-C-C-C10 reactionsu convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C)u produces: 4 ATP & 2 NADHu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 103. glucose Overview C-C-C-C-C-C 2 ATP10 reactionsu convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C)u produces: 4 ATP & 2 NADHu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 104. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADPu convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C)u produces: 4 ATP & 2 NADHu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 105. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADPu convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C)u produces: 4 ATP & 2 NADHu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 106. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADPu convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C)u produces: DHAP 4 ATP & 2 NADH P-C-C-Cu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 107. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADPu convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C)u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-Pu consumes: 2 ATPu net yield: 2 ATP & 2 NADH AP Biology 18
  • 108. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2 ATP u net yield: 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphateG3P Biology AP = glyceraldehyde-3-phosphate 18
  • 109. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2 ATP u net yield: 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphateG3P Biology AP = glyceraldehyde-3-phosphate 18
  • 110. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2 ATP u net yield: 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 111. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 ATP u net yield: 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 112. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2 ATP u net yield: 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 113. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2 ATP 2 u net yield: 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 114. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 115. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2Pi 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 116. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2Pi 4 ADP 2 ATP & 2 NADHDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 117. glucose Overview C-C-C-C-C-C 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2Pi 4 ADP 2 ATP & 2 NADH 4 ATPDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 118. glucose Overview C-C-C-C-C-C enzyme 2 ATP10 reactions 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2Pi 4 ADP 2 ATP & 2 NADH 4 ATPDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 119. glucose Overview C-C-C-C-C-C enzyme 2 ATP10 reactions enzyme 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2Pi 4 ADP 2 ATP & 2 NADH 4 ATPDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 120. glucose Overview C-C-C-C-C-C enzyme 2 ATP10 reactions enzyme 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) enzyme enzyme u produces: DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2Pi 4 ADP 2 ATP & 2 NADH 4 ATPDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 121. glucose Overview C-C-C-C-C-C enzyme 2 ATP10 reactions enzyme 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) enzyme enzyme u produces: enzyme DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pi 2 ATP 2 u net yield: 2Pi 4 ADP 2 ATP & 2 NADH 4 ATPDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 122. glucose Overview C-C-C-C-C-C enzyme 2 ATP10 reactions enzyme 2 ADP u convert fructose-1,6bP glucose (6C) to P-C-C-C-C-C-C-P 2 pyruvate (3C) enzyme enzyme u produces: enzyme DHAP G3P 4 ATP & 2 NADH P-C-C-C C-C-C-P u consumes: 2H 2 NAD+ 2Pienzyme 2 ATP 2 u net yield: enzyme 2Pi 4 ADP 2 ATP & 2 NADH enzyme 4 ATPDHAP = dihydroxyacetone phosphate pyruvateG3P Biology AP = glyceraldehyde-3-phosphate C-C-C 18
  • 123. Glycolysis summaryAP Biology 19
  • 124. Glycolysis summaryENERGY INVESTMENTAP Biology 19
  • 125. Glycolysis summaryENERGY INVESTMENT endergonicAP Biology 19
  • 126. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATPAP Biology 19
  • 127. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATPAP Biology 19
  • 128. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATPAP Biology 19
  • 129. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATPAP Biology 19
  • 130. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3P C-C-C-PAP Biology 19
  • 131. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-PAP Biology 19
  • 132. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonicAP Biology 19
  • 133. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonic harvest a little ATP & a little NADHAP Biology 19
  • 134. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonic harvest a little 4 ATP ATP & a little NADHAP Biology 19
  • 135. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonic harvest a little 4 ATP ATP & a little NADH like $$ in the bankAP Biology 19
  • 136. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonic harvest a little 4 ATP ATP & a little NADH like $$ in the bankNET YIELDAP Biology 19
  • 137. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonic harvest a little 4 ATP ATP & a little NADH like $$ in the bankNET YIELD net yieldAP Biology 19
  • 138. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonic harvest a little 4 ATP ATP & a little NADH like $$ in the bankNET YIELD net yield ü2 ATPAP Biology 19
  • 139. Glycolysis summaryENERGY INVESTMENT endergonic invest some ATP -2 ATP G3PENERGY PAYOFF C-C-C-P exergonic harvest a little 4 ATP ATP & a little NADH like $$ in the bankNET YIELD net yield ü2 ATPAP Biology ü2 NADH 19
  • 140. 1st half of glycolysis (5 reactions) CH2OHGlucose “priming” Glucose 1 O ATP hexokinaseuget glucose ready to ADP CH2 O P O split Glucose 6-phosphate 2 § phosphorylate phosphoglucose CH2 O P glucose isomerase O CH2OH § molecular Fructose 6-phosphate 3 rearrangement ATP phosphofructokinase P O CH2 CH2 O Pusplit destabilized ADP O Fructose 1,6-bisphosphate glucose 4,5 aldolase H P O CH2 isomerase C O C O Dihydroxyacetone Glyceraldehyde 3 phosphate -phosphate (G3P) CHOH CH2OH CH2 O P NAD+ Pi 6 Pi NAD+ NADH glyceraldehyde NADH 3-phosphate P O O dehydrogenase CHOHAP Biology 1,3-Bisphosphoglycerate 1,3-Bisphosphoglycerate (BPG) (BPG) CH2 O P 20
  • 141. 1st half of glycolysis (5 reactions) CH2OHGlucose “priming” Glucose 1 O ATP hexokinaseuget glucose ready to ADP CH2 O P O split Glucose 6-phosphate 2 § phosphorylate phosphoglucose CH2 O P glucose isomerase O CH2OH § molecular Fructose 6-phosphate 3 rearrangement ATP phosphofructokinase P O CH2 CH2 O Pusplit destabilized ADP O Fructose 1,6-bisphosphate glucose 4,5 aldolase H P O CH2 isomerase C O C O Dihydroxyacetone Glyceraldehyde 3 phosphate -phosphate (G3P) CHOH CH2OH CH2 O P NAD+ Pi 6 Pi NAD+ NADH glyceraldehyde NADH 3-phosphate P O O dehydrogenase CHOHAP Biology 1,3-Bisphosphoglycerate 1,3-Bisphosphoglycerate (BPG) (BPG) CH2 O P 20
  • 142. 1st half of glycolysis (5 reactions) CH2OHGlucose “priming” Glucose 1 O ATP hexokinaseuget glucose ready to ADP CH2 O P O split Glucose 6-phosphate 2 § phosphorylate phosphoglucose CH2 O P glucose isomerase O CH2OH § molecular Fructose 6-phosphate 3 rearrangement ATP phosphofructokinase P O CH2 CH2 O Pusplit destabilized ADP O Fructose 1,6-bisphosphate glucose 4,5 aldolase H P O CH2 isomerase C O C O Dihydroxyacetone Glyceraldehyde 3 phosphate -phosphate (G3P) CHOH CH2OH CH2 O P NAD+ Pi 6 Pi NAD+ NADH glyceraldehyde NADH 3-phosphate P O O dehydrogenase CHOHAP Biology 1,3-Bisphosphoglycerate 1,3-Bisphosphoglycerate (BPG) (BPG) CH2 O P 20
  • 143. 2nd half of glycolysis (5 reactions) Energy Harvest NAD+ Pi Pi NAD+ 6 NADH NADH ADP 7 ADP phosphoglycerate O- kinase ATP C ATP 3-Phosphoglycerate 3-Phosphoglycerate CHOH (3PG) (3PG) CH2 O P 8 O- phosphoglycero- mutase C O H C O P 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) CH2OH 9 O- H 2O enolase H 2O C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C OAP Biology Pyruvate Pyruvate CH3 21
  • 144. 2nd half of glycolysis (5 reactions) DHAP Energy Harvest P-C-C-C NAD+ Pi Pi NAD+ 6 NADH NADH ADP 7 ADP phosphoglycerate O- kinase ATP C ATP 3-Phosphoglycerate 3-Phosphoglycerate CHOH (3PG) (3PG) CH2 O P 8 O- phosphoglycero- mutase C O H C O P 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) CH2OH 9 O- H 2O enolase H 2O C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C OAP Biology Pyruvate Pyruvate CH3 21
  • 145. 2nd half of glycolysis (5 reactions) DHAP G3P Energy Harvest P-C-C-C C-C-C-P NAD+ Pi Pi NAD+ 6 NADH NADH ADP 7 ADP phosphoglycerate O- kinase ATP C ATP 3-Phosphoglycerate 3-Phosphoglycerate CHOH (3PG) (3PG) CH2 O P 8 O- phosphoglycero- mutase C O H C O P 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) CH2OH 9 O- H 2O enolase H 2O C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C OAP Biology Pyruvate Pyruvate CH3 21
  • 146. 2nd half of glycolysis (5 reactions) DHAP G3P Energy Harvest P-C-C-C C-C-C-P NAD+ Pi Pi NAD+ 6 u NADH production NADH NADH § G3P donates H ADP 7 ADP phosphoglycerate O- § oxidizes the sugar kinase ATP C ATP § reduces NAD+ 3-Phosphoglycerate 3-Phosphoglycerate CHOH § NAD+ → NADH (3PG) (3PG) CH2 O P 8 u ATP production phosphoglycero- O- mutase C O § G3P → → → pyruvate H C O P 2-Phosphoglycerate 2-Phosphoglycerate § PEP sugar donates P (2PG) (2PG) CH2OH w “substrate level H 2O 9 H 2O O- enolase phosphorylation” C O O § ADP → ATP Phosphoenolpyruvate Phosphoenolpyruvate C P CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C OAP Biology Pyruvate Pyruvate CH3 21
  • 147. 2nd half of glycolysis (5 reactions) DHAP G3P Energy Harvest P-C-C-C C-C-C-P NAD+ Pi Pi NAD+ 6 u NADH production NADH NADH § G3P donates H ADP 7 ADP phosphoglycerate O- § oxidizes the sugar kinase ATP C ATP § reduces NAD+ 3-Phosphoglycerate 3-Phosphoglycerate CHOH § NAD+ → NADH (3PG) (3PG) CH2 O P 8 u ATP production phosphoglycero- O- mutase C O § G3P → → → pyruvate H C O P 2-Phosphoglycerate 2-Phosphoglycerate § PEP sugar donates P (2PG) (2PG) CH2OH w “substrate level H 2O 9 H 2O O- enolase phosphorylation” C O O § ADP → ATP Phosphoenolpyruvate Phosphoenolpyruvate C P CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C OAP Biology Pyruvate Pyruvate CH3 21
  • 148. 2nd half of glycolysis (5 reactions) DHAP G3P Energy Harvest P-C-C-C C-C-C-P NAD+ Pi Pi NAD+ 6 u NADH production NADH NADH § G3P donates H ADP 7 ADP phosphoglycerate O- § oxidizes the sugar kinase ATP C ATP § reduces NAD+ 3-Phosphoglycerate 3-Phosphoglycerate CHOH § NAD+ → NADH (3PG) (3PG) CH2 O P 8 u ATP production phosphoglycero- O- mutase C O § G3P → → → pyruvate H C O P 2-Phosphoglycerate 2-Phosphoglycerate § PEP sugar donates P (2PG) (2PG) CH2OH w “substrate level H 2O 9 H 2O O- enolase phosphorylation” C O O § ADP → ATP Phosphoenolpyruvate Phosphoenolpyruvate C P CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C OAP Biology Pyruvate Pyruvate CH3 21
  • 149. 2nd half of glycolysis (5 reactions) DHAP G3P Energy Harvest P-C-C-C C-C-C-P NAD+ Pi Pi NAD+ 6 u NADH production NADH NADH § G3P donates H ADP 7 ADP phosphoglycerate O- § oxidizes the sugar kinase ATP C ATP § reduces NAD+ 3-Phosphoglycerate 3-Phosphoglycerate CHOH § NAD+ → NADH (3PG) (3PG) CH2 O P 8 u ATP production phosphoglycero- O- mutase C O § G3P → → → pyruvate H C O P 2-Phosphoglycerate 2-Phosphoglycerate § PEP sugar donates P (2PG) (2PG) CH2OH w “substrate level H 2O 9 H 2O O- enolase phosphorylation” C O O § ADP → ATP Phosphoenolpyruvate Phosphoenolpyruvate C P CH2 (PEP) (PEP) 10 O- ADP ADP Payola! pyruvate kinase C O ATP ATP Finally some C OAP Biology Pyruvate Pyruvate CH3 ATP! 21
  • 150. Substrate-level Phosphorylation 9 O- H 2O enolase H 2O C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 151. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 152. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 153. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 154. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 155. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 156. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 157. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 158. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 159. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O C O P Phosphoenolpyruvate Phosphoenolpyruvate CH2 (PEP) (PEP) 10 O- ADP ADP pyruvate kinase C O ATP ATP C O Pyruvate Pyruvate CH3AP Biology 22
  • 160. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O OP is transferred Phosphoenolpyruvate Phosphoenolpyruvate C CH2 P (PEP) (PEP)from PEP to ADP ADP 10 ADP O- ükinase enzyme ATP pyruvate kinase ATP C C O O üADP → ATP Pyruvate Pyruvate CH3AP Biology 22
  • 161. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO2 9 enolase H 2O O- C O OP is transferred Phosphoenolpyruvate Phosphoenolpyruvate C CH2 P (PEP) (PEP)from PEP to ADP ADP 10 ADP O- ükinase enzyme ATP pyruvate kinase ATP C C O O üADP → ATP Pyruvate Pyruvate CH3 ATPAP Biology 22
  • 162. Substrate-level Phosphorylation § In the last steps of glycolysis, where did the P come from to make ATP? u the sugar substrate (PEP) HO 2 9 enolase H 2O O- C O OP is transferred Phosphoenolpyruvate Phosphoenolpyruvate C CH2 P (PEP) (PEP)from PEP to ADP ADP 10 ADP O- ükinase enzyme ATP pyruvate kinase ATP C C O O üADP → ATP Pyruvate Pyruvate CH3 ATP I get it! The Pi came directly fromAP Biology the substrate! 22
  • 163. Energy accounting of glycolysis glucose → → → → → pyruvate 6C 2x 3CAP Biology 23
  • 164. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3CAP Biology 23
  • 165. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3CAP Biology 23
  • 166. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3C 4 ADP 4 ATPAP Biology 23
  • 167. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3C 4 ADP 4 ATP 2 NAD+ 2AP Biology 23
  • 168. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3C 4 ADP 4 ATP 2 NAD+ 2§ Net gain = 2 ATP + 2 NADH u some energy investment (-2 ATP) u small energy return (4 ATP + 2 NADH)AP Biology 23
  • 169. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3C 4 ADP 4 ATP 2 NAD+ 2§ Net gain = 2 ATP + 2 NADH u some energy investment (-2 ATP) u small energy return (4 ATP + 2 NADH)§ 1 6C sugar → 2 3C sugarsAP Biology 23
  • 170. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3C 4 ADP 4 ATP All that work! And that’s all I get? 2 NAD+ 2§ Net gain = 2 ATP + 2 NADH u some energy investment (-2 ATP) u small energy return (4 ATP + 2 NADH)§ 1 6C sugar → 2 3C sugarsAP Biology 23
  • 171. Energy accounting of glycolysis 2 ATP 2 ADP glucose → → → → → pyruvate 6C 2x 3C 4 ADP 4 ATP All that work! And that’s all I get? 2 NAD+ 2 But glucose has so much more§ Net gain = 2 ATP + 2 NADH to give! u some energy investment (-2 ATP) u small energy return (4 ATP + 2 NADH)§ 1 6C sugar → 2 3C sugarsAP Biology 23
  • 172. Is that all there is?AP Biology 24
  • 173. Is that all there is? § Not a lot of energy… u for 1 billon years+ this is how life on Earth survived § no O2 = slow growth, slow reproduction § only harvest 3.5% of energy stored in glucose w more carbons to strip off = more energy to harvestAP Biology 24
  • 174. Is that all there is? § Not a lot of energy… u for 1 billon years+ this is how life on Earth survived § no O2 = slow growth, slow reproduction § only harvest 3.5% of energy stored in glucose w more carbons to strip off = more energy to harvest O2 O2 O2O2 AP Biology O2 24
  • 175. Is that all there is? § Not a lot of energy… u for 1 billon years+ this is how life on Earth survived § no O2 = slow growth, slow reproduction § only harvest 3.5% of energy stored in glucose w more carbons to strip off = more energy to harvest O2 O2 O2 Hard wayO2 to make a living! AP Biology O2 24
  • 176. Is that all there is? § Not a lot of energy… u for 1 billon years+ this is how life on Earth survived § no O2 = slow growth, slow reproduction § only harvest 3.5% of energy stored in glucose w more carbons to strip off = more energy to harvest O2 O2 glucose → → → → pyruvate O2 Hard wayO2 to make a living! AP Biology O2 24
  • 177. Is that all there is? § Not a lot of energy… u for 1 billon years+ this is how life on Earth survived § no O2 = slow growth, slow reproduction § only harvest 3.5% of energy stored in glucose w more carbons to strip off = more energy to harvest O2 O2 glucose → → → → pyruvate 6C O2 Hard wayO2 to make a living! AP Biology O2 24
  • 178. Is that all there is? § Not a lot of energy… u for 1 billon years+ this is how life on Earth survived § no O2 = slow growth, slow reproduction § only harvest 3.5% of energy stored in glucose w more carbons to strip off = more energy to harvest O2 O2 glucose → → → → pyruvate 6C 2x 3C O2 Hard wayO2 to make a living! AP Biology O2 24
  • 179. But can’t stop there!AP Biology 25
  • 180. But can’t stop there! DHAP G3P NAD+ Pi Pi NAD+ NADH NADH 1,3-BPG 1,3-BPGAP Biology 25
  • 181. But can’t stop there! DHAP G3P NAD+ Pi Pi NAD+ NADH NAD+ Pi Pi NADH NAD+ 6 NADH 1,3-BPG 1,3-BPG NADH ADP 7 ADP ATP ATP 3-Phosphoglycerate 3-Phosphoglycerate (3PG) (3PG) 8 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) 9 H 2O H 2O Phosphoenolpyruvate Phosphoenolpyruvate (PEP) (PEP) ADP 10 ADP ATP ATP Pyruvate PyruvateAP Biology 25
  • 182. But can’t stop there! DHAP G3P NAD+ Pi Pi NAD+ raw materials → products NADH NAD+ Pi 6 Pi NADH NAD+ NADH 1,3-BPG 1,3-BPG NADH ADP 7 ADP ATP ATP 3-Phosphoglycerate 3-Phosphoglycerate (3PG) (3PG) 8 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) 9 H 2O H 2O Phosphoenolpyruvate Phosphoenolpyruvate (PEP) (PEP) ADP 10 ADP ATP ATP Pyruvate PyruvateAP Biology 25
  • 183. But can’t stop there! DHAP G3P NAD+ Pi Pi NAD+ raw materials → products NADH NAD+ Pi 6 Pi NADH NAD+ NADH 1,3-BPG 1,3-BPG NADH ADP 7 ADPGlycolysis ATP 3-Phosphoglycerate 3-Phosphoglycerate ATPglucose + 2ADP + 2Pi + 2 NAD+ → 2 pyruvate + 2ATP + 2NADH (3PG) (3PG) 8 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) 9 H 2O H 2O Phosphoenolpyruvate Phosphoenolpyruvate (PEP) (PEP) ADP 10 ADP ATP ATP Pyruvate Pyruvate AP Biology 25
  • 184. But can’t stop there! DHAP G3P NAD+ Pi Pi NAD+ raw materials → products NADH NAD+ Pi 6 Pi NADH NAD+ NADH 1,3-BPG 1,3-BPG NADH ADP 7 ADPGlycolysis ATP 3-Phosphoglycerate 3-Phosphoglycerate ATPglucose + 2ADP + 2Pi + 2 NAD+ → 2 pyruvate + 2ATP + 2NADH (3PG) (3PG) 8 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) 9 H 2O H 2O Phosphoenolpyruvate Phosphoenolpyruvate (PEP) (PEP) ADP 10 ADP ATP ATP Pyruvate Pyruvate AP Biology 25
  • 185. But can’t stop there! DHAP G3P NAD+ Pi Pi NAD+ raw materials → products NADH NAD+ Pi 6 Pi NADH NAD+ NADH 1,3-BPG 1,3-BPG NADH ADP 7 ADPGlycolysis ATP 3-Phosphoglycerate 3-Phosphoglycerate ATPglucose + 2ADP + 2Pi + 2 NAD+ → 2 pyruvate + 2ATP + 2NADH (3PG) (3PG) 8 2-Phosphoglycerate 2-Phosphoglycerate (2PG) (2PG) 9 H 2O H 2O Phosphoenolpyruvate Phosphoenolpyruvate (PEP) (PEP) ADP 10 ADP ATP ATP Pyruvate Pyruvate AP Biology 25
  • 186. But can’t stop there! DHAP G3P NAD+ Pi Pi NAD+ raw materials → products NADH NAD+ Pi 6 Pi NADH NAD+ NADH 1,3-BPG 1,3-BPG NADH ADP 7 ADPGlycolysis ATP 3-Phosphoglycerate 3-Phosphoglycerate ATPglucose + 2ADP + 2Pi + 2 NAD+ → 2 pyruvate + 2ATP + 2NADH (3PG) (3PG) 8 2-Phosphoglycerate 2-Phosphoglycerate§ Going to run out of NAD+ (2PG) 9 (2PG) u without regenerating NAD+, H 2O H 2O energy production would stop! Phosphoenolpyruvate Phosphoenolpyruvate (PEP) (PEP) u another molecule must accept H ADP 10 ADP from NADH ATP ATP § so NAD+ is freed up for another round Pyruvate Pyruvate AP Biology 25
  • 187. How is NADH recycled to NAD+? H 2O NAD+ CO2 O2 NADH NADH acetaldehyde acetyl-CoA NADH NAD+ lactate NAD+ Krebs ethanol cycleAP Biology 26
  • 188. How is NADH recycled to NAD+?Another moleculemust accept H fromNADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde acetyl-CoA NADH NAD+ lactate NAD+ Krebs ethanol cycle AP Biology 26
  • 189. How is NADH recycled to NAD+?Another moleculemust accept H fromNADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ Krebs ethanol cycle AP Biology 26
  • 190. How is NADH recycled to NAD+?Another moleculemust accept H from pyruvateNADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ Krebs ethanol cycle AP Biology 26
  • 191. How is NADH recycled to NAD+? with oxygenAnother molecule aerobic respirationmust accept H from pyruvateNADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ Krebs ethanol cycle AP Biology 26
  • 192. How is NADH recycled to NAD+? with oxygenAnother molecule aerobic respirationmust accept H from pyruvateNADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ Krebs ethanol cycle AP Biology 26
  • 193. How is NADH recycled to NAD+? with oxygen without oxygenAnother molecule aerobic respiration anaerobic respirationmust accept H from pyruvate “fermentation”NADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ Krebs ethanol cycle AP Biology 26
  • 194. How is NADH recycled to NAD+? with oxygen without oxygenAnother molecule aerobic respiration anaerobic respirationmust accept H from pyruvate “fermentation”NADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ Krebs ethanol cycle AP Biology 26
  • 195. How is NADH recycled to NAD+? with oxygen without oxygenAnother molecule aerobic respiration anaerobic respirationmust accept H from pyruvate “fermentation”NADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ lactic acid fermentation Krebs ethanol cycle AP Biology 26
  • 196. How is NADH recycled to NAD+? with oxygen without oxygenAnother molecule aerobic respiration anaerobic respirationmust accept H from pyruvate “fermentation”NADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ lactic acid fermentation Krebs ethanol cycle alcohol AP Biology fermentation 26
  • 197. How is NADH recycled to NAD+? with oxygen without oxygenAnother molecule aerobic respiration anaerobic respirationmust accept H from pyruvate “fermentation”NADH H 2O NAD+ CO2 O2 NADH NADH acetaldehyde recycle acetyl-CoA NADH NAD+ NADH lactate NAD+ lactic acid fermentationwhich path you Krebs ethanoluse depends on cycle alcoholwho you are… AP Biology fermentation 26
  • 198. Fermentation (anaerobic)AP Biology 27
  • 199. Fermentation (anaerobic) § Bacteria, yeastAP Biology 27
  • 200. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1CAP Biology 27
  • 201. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+AP Biology 27
  • 202. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→AP Biology 27
  • 203. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→ § beer, wine, breadAP Biology 27
  • 204. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→ § beer, wine, breadAP Biology 27
  • 205. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→ § beer, wine, bread § Animals, some fungiAP Biology 27
  • 206. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→ § beer, wine, bread § Animals, some fungi pyruvate → lactic acid 3C 3CAP Biology 27
  • 207. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→ § beer, wine, bread § Animals, some fungi pyruvate → lactic acid 3C 3C NADH NAD+AP Biology 27
  • 208. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→ § beer, wine, bread § Animals, some fungi pyruvate → lactic acid 3C 3C NADH NADback to glycolysis→→ +AP Biology 27
  • 209. Fermentation (anaerobic) § Bacteria, yeast pyruvate → ethanol + CO2 3C 2C 1C NADH NAD+ back to glycolysis→→ § beer, wine, bread § Animals, some fungi pyruvate → lactic acid 3C 3C NADH NADback to glycolysis→→ + §AP Biology cheese, anaerobic exercise (no O2) 27
  • 210. bacteria Alcohol Fermentation yeastAP Biology 28
  • 211. bacteria Alcohol Fermentation yeast recycle NADHAP Biology 28
  • 212. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1CAP Biology 28
  • 213. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1C NADH NAD+AP Biology 28
  • 214. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1C NADH NAD+back to glycolysis→→AP Biology 28
  • 215. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1C NADH NAD+back to glycolysis→→AP Biology 28
  • 216. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1C NADH NAD+back to glycolysis→→§ Dead end processAP Biology 28
  • 217. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1C NADH NAD+back to glycolysis→→§ Dead end process § at ~12% ethanol, kills yeastAP Biology 28
  • 218. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1C NADH NAD+back to glycolysis→→§ Dead end process § at ~12% ethanol, kills yeast § can’t reverse the reactionAP Biology 28
  • 219. bacteria Alcohol Fermentation yeast recycle pyruvate → ethanol + CO2 NADH 3C 2C 1C NADH NAD+back to glycolysis→→§ Dead end process § at ~12% ethanol, kills yeast § can’t reverse the reaction Count the carbons!AP Biology 28
  • 220. animals some fungi Lactic Acid FermentationAP Biology 29
  • 221. animals some fungi Lactic Acid Fermentation recycle NADHAP Biology 29
  • 222. animals some fungi Lactic Acid Fermentation recycle pyruvate → lactic acid NADH 3C 3CAP Biology 29
  • 223. animals some fungi Lactic Acid Fermentation recycle pyruvate → lactic acid NADH 3C 3C NADH NAD+AP Biology 29
  • 224. animals some fungi Lactic Acid Fermentation recycle pyruvate → lactic acid NADH 3C 3C NADH NAD+back to glycolysis→→AP Biology 29
  • 225. animals some fungi Lactic Acid Fermentation recycle pyruvate → lactic acid NADH 3C 3C NADH NAD+back to glycolysis→→§ Reversible processAP Biology 29
  • 226. animals some fungi Lactic Acid Fermentation recycle pyruvate → lactic acid NADH 3C 3C NADH NAD+back to glycolysis→→§ Reversible process Count the carbons!AP Biology 29
  • 227. animals some fungi Lactic Acid Fermentation recycle pyruvate → lactic acid → NADH 3C 3C NADH NAD+back to glycolysis→→§ Reversible process Count the carbons!AP Biology 29
  • 228. animals some fungi Lactic Acid Fermentation O2 recycle pyruvate → lactic acid → NADH 3C 3C NADH NAD+back to glycolysis→→§ Reversible process Count the carbons!AP Biology 29
  • 229. animals some fungi Lactic Acid Fermentation O2 recycle pyruvate → lactic acid → NADH 3C 3C NADH NAD+back to glycolysis→→§ Reversible process § once O2 is available, lactate is converted back to pyruvate by the liver Count the carbons!AP Biology 29
  • 230. Pyruvate is a branching point PyruvateAP Biology 30
  • 231. Pyruvate is a branching point Pyruvate O2AP Biology 30
  • 232. Pyruvate is a branching point Pyruvate O2fermentationAP Biology 30
  • 233. Pyruvate is a branching point Pyruvate O2fermentation anaerobic respirationAP Biology 30
  • 234. Pyruvate is a branching point Pyruvate O2 O2fermentation anaerobic respirationAP Biology 30
  • 235. Pyruvate is a branching point Pyruvate O2 O2fermentation anaerobic respiration mitochondriaAP Biology 30
  • 236. Pyruvate is a branching point Pyruvate O2 O2fermentation anaerobic respiration mitochondria Krebs cycleAP Biology 30
  • 237. Pyruvate is a branching point Pyruvate O2 O2fermentation anaerobic respiration mitochondria Krebs cycle aerobic respirationAP Biology 30
  • 238. AP Biology 2006-2007 31
  • 239. What’s the point?AP Biology 2006-2007 31
  • 240. What’s the point? The point is to make ATP!AP Biology 2006-2007 31
  • 241. What’s the point? The point is to make ATP! ATPAP Biology 2006-2007 31
  • 242. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+ H+AP Biology 32
  • 243. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP H+AP Biology 32
  • 244. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP H+AP Biology 32
  • 245. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + Pi → ATP H+AP Biology 32
  • 246. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP ADP + Pi → ATP H+AP Biology 32
  • 247. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + P ADP + Pi → ATP H+AP Biology 32
  • 248. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + P ADP + Pi → ATP ATP H+AP Biology 32
  • 249. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + P ADP + Pi → ATP ATP H+But… Have we done that yet?AP Biology 32
  • 250. AP Biology 2006-2007 33
  • 251. NO! There’s still more to my story! Any Questions?AP Biology 2006-2007 33
  • 252. Cellular Respiration Stage 2 & 3: Oxidation of Pyruvate Krebs CycleAP Biology 2006-2007 34
  • 253. Glycolysis is only the start § Glycolysis § Pyruvate has more energy to yield u 3 more C to strip off (to oxidize) u if O2 is available, pyruvate enters mitochondria u enzymes of Krebs cycle complete the full oxidation of sugar to CO2AP Biology 35
  • 254. Glycolysis is only the start § Glycolysis glucose → → → → → pyruvate 6C 2x 3C § Pyruvate has more energy to yield u 3 more C to strip off (to oxidize) u if O2 is available, pyruvate enters mitochondria u enzymes of Krebs cycle complete the full oxidation of sugar to CO2AP Biology 35
  • 255. Glycolysis is only the start § Glycolysis glucose → → → → → pyruvate 6C 2x 3C § Pyruvate has more energy to yield u 3 more C to strip off (to oxidize) u if O2 is available, pyruvate enters mitochondria u enzymes of Krebs cycle complete the full oxidation of sugar to CO2AP Biology 35
  • 256. Glycolysis is only the start § Glycolysis glucose → → → → → pyruvate 6C 2x 3C § Pyruvate has more energy to yield u 3 more C to strip off (to oxidize) u if O2 is available, pyruvate enters mitochondria u enzymes of Krebs cycle complete the full oxidation of sugar to CO2 pyruvate → → → → → → CO2AP Biology 35
  • 257. Glycolysis is only the start § Glycolysis glucose → → → → → pyruvate 6C 2x 3C § Pyruvate has more energy to yield u 3 more C to strip off (to oxidize) u if O2 is available, pyruvate enters mitochondria u enzymes of Krebs cycle complete the full oxidation of sugar to CO2 pyruvate → → → → → → CO2 3CAP Biology 35
  • 258. Glycolysis is only the start § Glycolysis glucose → → → → → pyruvate 6C 2x 3C § Pyruvate has more energy to yield u 3 more C to strip off (to oxidize) u if O2 is available, pyruvate enters mitochondria u enzymes of Krebs cycle complete the full oxidation of sugar to CO2 pyruvate → → → → → → CO2 3C 1CAP Biology 35
  • 259. Cellular respirationAP Biology 36
  • 260. Cellular respirationAP Biology 36
  • 261. Mitochondria — StructureAP Biology 37
  • 262. Mitochondria — Structure § Double membrane energy harvesting organelle u smooth outer membrane u highly folded inner membrane § cristae u intermembrane space § fluid-filled space between membranes u matrix § inner fluid-filled space u DNA, ribosomes u enzymes § free in matrix & membrane-boundAP Biology 37
  • 263. Mitochondria — Structure § Double membrane energy harvesting organelle u smooth outer membrane u highly folded inner membrane § cristae u intermembrane space § fluid-filled space between membranes u matrix § inner fluid-filled space u DNA, ribosomes u enzymes outer § free in matrix & membrane-bound intermembrane inner membrane space membrane cristae matrixAP Biology 37
  • 264. Mitochondria — Structure § Double membrane energy harvesting organelle u smooth outer membrane u highly folded inner membrane § cristae u intermembrane space § fluid-filled space between membranes u matrix § inner fluid-filled space u DNA, ribosomes u enzymes outer § free in matrix & membrane-bound intermembrane inner membrane space membrane cristae matrixAP Biology 37
  • 265. Mitochondria — Structure § Double membrane energy harvesting organelle u smooth outer membrane u highly folded inner membrane § cristae u intermembrane space § fluid-filled space between membranes u matrix § inner fluid-filled space u DNA, ribosomes u enzymes outer § free in matrix & membrane-bound intermembrane inner membrane space membrane cristae matrixAP Biology mitochondrial DNA 37
  • 266. Mitochondria — Structure § Double membrane energy harvesting organelle u smooth outer membrane u highly folded inner membrane § cristae u intermembrane space § fluid-filled space between membranes u matrix § inner fluid-filled space u DNA, ribosomes u enzymes outer § free in matrix & membrane-bound intermembrane inner membrane space membrane cristae matrixAP Biology mitochondrial DNA 37
  • 267. Mitochondria — Structure § Double membrane energy harvesting organelle u smooth outer membrane u highly folded inner membrane § cristae u intermembrane space § fluid-filled space between membranes u matrix § inner fluid-filled space u DNA, ribosomes u enzymes outer § free in matrix & membrane-bound intermembrane inner membrane space membrane cristae matrixAP Biology mitochondrial DNA 37
  • 268. Mitochondria — Structure § Double membrane energy harvesting organelle u smooth outer membrane u highly folded inner membrane § cristae u intermembrane space § fluid-filled space between membranes u matrix § inner fluid-filled space u DNA, ribosomes u enzymes outer § free in matrix & membrane-bound intermembrane inner membrane space membrane cristae matrixWhat cells would haveAP Biologya lot of mitochondria? mitochondrial DNA 37
  • 269. Mitochondria – Function Advantage of highly folded inner membrane? More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 270. Mitochondria – FunctionDividing mitochondriaWho else divides like that? Advantage of highly folded inner membrane? More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 271. Mitochondria – FunctionDividing mitochondriaWho else divides like that? bacteria! Advantage of highly folded inner membrane? More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 272. Mitochondria – FunctionDividing mitochondriaWho else divides like that? bacteria!What does this tell us about Advantage of highly folded innerthe evolution of eukaryotes? membrane? More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 273. Mitochondria – FunctionDividing mitochondriaWho else divides like that? bacteria!What does this tell us about Advantage of highly folded innerthe evolution of eukaryotes? membrane?Endosymbiosis! More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 274. Mitochondria – FunctionDividing mitochondria Membrane-bound proteinsWho else divides like that? Enzymes & permeases bacteria!What does this tell us about Advantage of highly folded innerthe evolution of eukaryotes? membrane?Endosymbiosis! More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 275. Mitochondria – FunctionDividing mitochondria Membrane-bound proteinsWho else divides like that? Enzymes & permeases bacteria!What does this tell us about Advantage of highly folded innerthe evolution of eukaryotes? membrane?Endosymbiosis! More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 276. Oooooh! Form fits Mitochondria – Function function!Dividing mitochondria Membrane-bound proteinsWho else divides like that? Enzymes & permeases bacteria!What does this tell us about Advantage of highly folded innerthe evolution of eukaryotes? membrane?Endosymbiosis! More surface area for membrane-AP Biology bound enzymes & permeases 38
  • 277. Oxidation of pyruvateAP Biology 39
  • 278. Oxidation of pyruvateAP Biology 39
  • 279. Oxidation of pyruvate pyruvate → → → acetyl CoA + CO2AP Biology 39
  • 280. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix pyruvate → → → acetyl CoA + CO2AP Biology 39
  • 281. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 ]AP Biology 39
  • 282. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 ]AP Biology 39
  • 283. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C ]AP Biology 39
  • 284. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C 2C ]AP Biology 39
  • 285. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C 2C 1C ]AP Biology 39
  • 286. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C NAD 2C 1C ]AP Biology 39
  • 287. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C NAD 2C 1C ]AP Biology 39
  • 288. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C NAD 2C 1C ] u 3 step oxidation process u releases 2 CO 2 (count the carbons!) u reduces 2 NAD → 2 NADH (moves e-) u produces 2 acetyl CoAAP Biology 39
  • 289. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C NAD 2C 1C ] u 3 step oxidation process u releases 2 CO 2 (count the carbons!) u reduces 2 NAD → 2 NADH (moves e-) u produces 2 acetyl CoA § Acetyl CoA enters Krebs cycleAP Biology 39
  • 290. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C NAD 2C 1C ] Where does the u 3 step oxidation process CO2 go? u releases 2 CO 2 (count the carbons!) Exhale! u reduces 2 NAD → 2 NADH (moves e-) u produces 2 acetyl CoA § Acetyl CoA enters Krebs cycleAP Biology 39
  • 291. Oxidation of pyruvate § Pyruvate enters mitochondrial matrix [ 2x pyruvate → → → acetyl CoA + CO2 3C NAD 2C 1C ] Where does the u 3 step oxidation process CO2 go? u releases 2 CO 2 (count the carbons!) Exhale! u reduces 2 NAD → 2 NADH (moves e-) u produces 2 acetyl CoA § Acetyl CoA enters Krebs cycleAP Biology 39
  • 292. Pyruvate oxidized to Acetyl CoA Yield = 2C sugar + NADH + CO2AP Biology 40
  • 293. Pyruvate oxidized to Acetyl CoA Pyruvate Yield = 2C sugar + NADH + CO2AP Biology 40
  • 294. Pyruvate oxidized to Acetyl CoA Pyruvate Yield = 2C sugar + NADH + CO2AP Biology 40
  • 295. Pyruvate oxidized to Acetyl CoA Coenzyme A Pyruvate Yield = 2C sugar + NADH + CO2AP Biology 40
  • 296. Pyruvate oxidized to Acetyl CoA Coenzyme A Pyruvate Yield = 2C sugar + NADH + CO2AP Biology 40
  • 297. Pyruvate oxidized to Acetyl CoA Coenzyme A Pyruvate Yield = 2C sugar + NADH + CO2AP Biology 40
  • 298. Pyruvate oxidized to Acetyl CoA Coenzyme A Acetyl CoA Pyruvate Yield = 2C sugar + NADH + CO2AP Biology 40
  • 299. Pyruvate oxidized to Acetyl CoA Coenzyme A Acetyl CoA Pyruvate C-C-C Yield = 2C sugar + NADH + CO2AP Biology 40
  • 300. Pyruvate oxidized to Acetyl CoA Coenzyme A Acetyl CoA Pyruvate C-C C-C-C Yield = 2C sugar + NADH + CO2AP Biology 40
  • 301. Pyruvate oxidized to Acetyl CoA Coenzyme A Acetyl CoA Pyruvate CO2 C-C C-C-C Yield = 2C sugar + NADH + CO2AP Biology 40
  • 302. Pyruvate oxidized to Acetyl CoA Coenzyme A Acetyl CoA Pyruvate CO2 C-C C-C-C oxidation Yield = 2C sugar + NADH + CO2AP Biology 40
  • 303. Pyruvate oxidized to Acetyl CoA reduction Coenzyme A Acetyl CoA Pyruvate CO2 C-C C-C-C oxidation Yield = 2C sugar + NADH + CO2AP Biology 40
  • 304. Pyruvate oxidized to Acetyl CoA NAD+ reduction Coenzyme A Acetyl CoA Pyruvate CO2 C-C C-C-C oxidation Yield = 2C sugar + NADH + CO2AP Biology 40
  • 305. Pyruvate oxidized to Acetyl CoA NAD+ reduction Coenzyme A Acetyl CoA Pyruvate CO2 C-C C-C-C oxidation Yield = 2C sugar + NADH + CO2AP Biology 40
  • 306. Pyruvate oxidized to Acetyl CoA NAD+ reduction Coenzyme A Acetyl CoA Pyruvate CO2 C-C C-C-C oxidation [ 2 x Yield = 2C sugar + NADH + CO2AP Biology ] 40
  • 307. 1937 | 1953 Krebs cycle Hans Krebs 1900-1981AP Biology 41
  • 308. 1937 | 1953 Krebs cycle § aka Citric Acid Cycle u in mitochondrial matrix u 8 step pathway § each catalyzed by specific enzyme Hans Krebs 1900-1981 § step-wise catabolism of 6C citrate moleculeAP Biology 41
  • 309. 1937 | 1953 Krebs cycle § aka Citric Acid Cycle u in mitochondrial matrix u 8 step pathway § each catalyzed by specific enzyme Hans Krebs 1900-1981 § step-wise catabolism of 6C citrate molecule § Evolved later than glycolysis u does that make evolutionary sense? § bacteria →3.5 billion years ago (glycolysis) § free O2 →2.7 billion years ago (photosynthesis) § eukaryotes →1.5 billion years ago (aerobicAP Biology respiration = organelles → mitochondria) 41
  • 310. Count the carbons! pyruvate acetyl CoA 3C 2C 4CAP Biology 42
  • 311. Count the carbons! pyruvate acetyl CoA 3C 2C 4C oxidation of sugarsAP Biology 42
  • 312. Count the carbons! pyruvate acetyl CoA 3C 2C citrate 4C 6C oxidation of sugarsAP Biology 42
  • 313. Count the carbons! pyruvate acetyl CoA 3C 2C citrate 4C 6C oxidation 6C of sugars 5CAP Biology 42
  • 314. Count the carbons! pyruvate acetyl CoA 3C 2C citrate 4C 6C oxidation 6C of sugars CO2 5CAP Biology 42
  • 315. Count the carbons! pyruvate acetyl CoA 3C 2C citrate 4C 6C oxidation 6C of sugars CO2 5C 4CAP Biology 42
  • 316. Count the carbons! pyruvate acetyl CoA 3C 2C citrate 4C 6C oxidation 6C of sugars CO2 5C 4C CO2AP Biology 42
  • 317. Count the carbons! pyruvate acetyl CoA 3C 2C citrate 4C 6C 4C oxidation 6C of sugars CO2 4C 5C 4C 4C CO2AP Biology 42
  • 318. Count the carbons! pyruvate acetyl CoA 3C 2C citrate 4C 6C 4C oxidation 6CThis happenstwice for each of sugars CO2glucosemolecule x2 4C 5C 4C 4C CO2AP Biology 42
  • 319. Count the electron carriers! pyruvate acetyl CoA 3C 2C 4CAP Biology 43
  • 320. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6CAP Biology 43
  • 321. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C 5CAP Biology 43
  • 322. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 5CAP Biology 43
  • 323. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 5CAP Biology 43
  • 324. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 5C 4CAP Biology 43
  • 325. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 5C CO2 4CAP Biology 43
  • 326. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 5C CO2 4CAP Biology NADH 43
  • 327. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 5C CO2 4C 4CAP Biology NADH 43
  • 328. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 5C CO2 4C 4CAP Biology ATP NADH 43
  • 329. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 4C 5C CO2 4C 4CAP Biology ATP NADH 43
  • 330. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 6C CO2 NADH 4C 5C FADH2 CO2 4C 4CAP Biology ATP NADH 43
  • 331. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate 4C 6C 4C 6C CO2 NADH 4C 5C FADH2 CO2 4C 4CAP Biology ATP NADH 43
  • 332. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate NADH 4C 6C 4C 6C CO2 NADH 4C 5C FADH2 CO2 4C 4CAP Biology ATP NADH 43
  • 333. Count the electron carriers! pyruvate acetyl CoA 3C 2C citrate NADH 4C 6C 4C 6CThis happenstwice for each CO2glucose NADHmolecule 4C x2 5C FADH2 CO2 4C 4CAP Biology ATP NADH 43
  • 334. Count the electron carriers! CO2 pyruvate acetyl CoA 3C 2C citrate NADH 4C 6C 4C 6CThis happenstwice for each CO2glucose NADHmolecule 4C x2 5C FADH2 CO2 4C 4CAP Biology ATP NADH 43
  • 335. Count the electron carriers! CO2 pyruvate acetyl CoA 3C 2C NADH citrate NADH 4C 6C 4C 6CThis happenstwice for each CO2glucose NADHmolecule 4C x2 5C FADH2 CO2 4C 4CAP Biology ATP NADH 43
  • 336. Count the electron carriers! CO2 pyruvate acetyl CoA 3C 2C NADH citrate NADH 4C 6C 4C reduction 6CThis happens of electrontwice for each CO2 carriersglucose NADHmolecule 4C x2 5C FADH2 CO2 4C 4CAP Biology ATP NADH 43
  • 337. Whassup?AP Biology 44
  • 338. Whassup? So we fully oxidized glucoseAP Biology 44
  • 339. Whassup? So we fully oxidized glucose C6H12O6AP Biology 44
  • 340. Whassup? So we fully oxidized glucose C6H12O6 ↓AP Biology 44
  • 341. Whassup? So we fully oxidized glucose C6H12O6 ↓ CO2AP Biology 44
  • 342. Whassup? So we fully oxidized glucose C6H12O6 ↓ CO2 & ended up with 4 ATP!AP Biology 44
  • 343. Whassup? So we fully oxidized glucose C6H12O6 ↓ CO2 & ended up with 4 ATP! What’s the point?AP Biology 44
  • 344. Electron Carriers = Hydrogen Carriers ADP + PiAP Biology 45
  • 345. Electron Carriers = Hydrogen Carriers § Krebs cycle produces large quantities of electron carriers ADP + PiAP Biology 45
  • 346. Electron Carriers = Hydrogen Carriers § Krebs cycle produces large quantities of electron carriers ADP + Pi uNADHAP Biology 45
  • 347. Electron Carriers = Hydrogen Carriers § Krebs cycle produces large quantities of electron carriers ADP + Pi uNADH uFADH2AP Biology 45
  • 348. Electron Carriers = Hydrogen Carriers § Krebs cycle produces large quantities of electron carriers ADP + Pi uNADH uFADH2 What’s so important about electron carriers?AP Biology 45
  • 349. Electron Carriers = Hydrogen Carriers § Krebs cycle produces large quantities of electron carriers ADP + Pi uNADH uFADH2 ugo to Electron Transport Chain! What’s so important about electron carriers?AP Biology 45
  • 350. Electron Carriers = Hydrogen Carriers H+ H+ H+ H+ § Krebs cycle H+ H+ H H+ + produces large quantities of electron carriers ADP + Pi uNADH H+ uFADH2 ugo to Electron Transport Chain! What’s so important about electron carriers?AP Biology 45
  • 351. Electron Carriers = Hydrogen Carriers H+ H+ H+ H+ § Krebs cycle H+ H+ H H+ + produces large quantities of electron carriers ADP + Pi uNADH ATP H+ uFADH2 ugo to Electron Transport Chain! What’s so important about electron carriers?AP Biology 45
  • 352. Energy accounting of Krebs cycleAP Biology 46
  • 353. Energy accounting of Krebs cycle pyruvate → → → → → → → → → CO2AP Biology 46
  • 354. Energy accounting of Krebs cycle pyruvate → → → → → → → → → CO2 3CAP Biology 46
  • 355. Energy accounting of Krebs cycle pyruvate → → → → → → → → → CO2 3C 3x 1CAP Biology 46
  • 356. Energy accounting of Krebs cycle 4 NAD + 1 FAD 4 NADH + 1 FADH2 pyruvate → → → → → → → → → CO2 3C 3x 1CAP Biology 46
  • 357. Energy accounting of Krebs cycle 4 NAD + 1 FAD 4 NADH + 1 FADH2 pyruvate → → → → → → → → → CO2 3C 3x 1CAP Biology 46
  • 358. Energy accounting of Krebs cycle 4 NAD + 1 FAD 4 NADH + 1 FADH2 pyruvate → → → → → → → → → CO2 3C 3x 1CAP Biology 46
  • 359. Energy accounting of Krebs cycle 4 NAD + 1 FAD 4 NADH + 1 FADH2 pyruvate → → → → → → → → → CO2 3C 3x 1C 1 ADP 1 ATP ATPAP Biology 46
  • 360. Energy accounting of Krebs cycle 4 NAD + 1 FAD 4 NADH + 1 FADH2 2x pyruvate → → → → → → → → → CO2 3C 3x 1C 1 ADP 1 ATP ATPAP Biology 46
  • 361. Energy accounting of Krebs cycle 4 NAD + 1 FAD 4 NADH + 1 FADH2 2x pyruvate → → → → → → → → → CO2 3C 3x 1C 1 ADP 1 ATP ATP Net gain = 2 ATPAP Biology 46
  • 362. Energy accounting of Krebs cycle 4 NAD + 1 FAD 4 NADH + 1 FADH2 2x pyruvate → → → → → → → → → CO2 3C 3x 1C 1 ADP 1 ATP ATP Net gain = 2 ATP = 8 NADH + 2 FADH2AP Biology 46
  • 363. Value of Krebs cycle?AP Biology 47
  • 364. Value of Krebs cycle? § If the yield is only 2 ATP then how was the Krebs cycle an adaptation? u value of NADH & FADH2 § electron carriers & H carriers w reduced molecules move electrons w reduced molecules move H+ ions § to be used in the Electron Transport ChainAP Biology 47
  • 365. Value of Krebs cycle? § If the yield is only 2 ATP then how was the Krebs cycle an adaptation? u value of NADH & FADH2 § electron carriers & H carriers w reduced molecules move electrons w reduced molecules move H+ ions § to be used in the Electron Transport Chain like $$ in the bankAP Biology 47
  • 366. AP Biology 2006-2007 48
  • 367. What’s the point?AP Biology 2006-2007 48
  • 368. What’s the point? The point is to make ATP! ATPAP Biology 2006-2007 48
  • 369. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+ H+AP Biology 49
  • 370. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP H+AP Biology 49
  • 371. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP H+AP Biology 49
  • 372. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + Pi → ATP H+AP Biology 49
  • 373. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP ADP + Pi → ATP H+AP Biology 49
  • 374. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + P ADP + Pi → ATP H+AP Biology 49
  • 375. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + P ADP + Pi → ATP ATP H+AP Biology 49
  • 376. H+ H+ H+ H+ And how do we do that? H+ H+ H+ H+§ ATP synthase u set up a H+ gradient u allow H+ to flow through ATP synthase u powers bonding of Pi to ADP ADP + P ADP + Pi → ATP ATP H+But… Have we done that yet?AP Biology 49
  • 377. AP Biology 2006-2007 50
  • 378. NO! The final chapter to my story is next! Any Questions?AP Biology 2006-2007 50
  • 379. Cellular Respiration Stage 4: Electron Transport ChainAP Biology 2006-2007 51
  • 380. AP Biology 2006-2007 52
  • 381. What’s the point?AP Biology 2006-2007 52
  • 382. What’s the point? The point is to make ATP! ATPAP Biology 2006-2007 52
  • 383. ATP accounting so far…AP Biology 53
  • 384. ATP accounting so far… § Glycolysis → 2 ATPAP Biology 53
  • 385. ATP accounting so far… § Glycolysis → 2 ATP § Kreb’s cycle → 2 ATPAP Biology 53
  • 386. ATP accounting so far… § Glycolysis → 2 ATP § Kreb’s cycle → 2 ATP § Life takes a lot of energy to run, need to extract more energy than 4 ATP! I need a lot more ATP!AP Biology 53
  • 387. ATP accounting so far… § Glycolysis → 2 ATP § Kreb’s cycle → 2 ATP § Life takes a lot of energy to run, need to extract more energy than 4 ATP! I need a lot more ATP! A working muscle recycles overAP Biology 10 million ATPs per second 53
  • 388. ATP accounting so far… § Glycolysis → 2 ATP § Kreb’s cycle → 2 ATP § Life takes a lot of energy to run, need to extract more energy than 4 ATP! There’s got to be a better way! I need a lot more ATP! A working muscle recycles overAP Biology 10 million ATPs per second 53
  • 389. There is a better way!AP Biology 54
  • 390. There is a better way! § Electron Transport Chain u series of proteins built into inner mitochondrial membrane § along cristae § transport proteins & enzymes u transport of electrons down ETC linked to pumping of H+ to create H+ gradient u yields ~36 ATP from 1 glucose! u only in presence of O2 (aerobic respiration)AP Biology 54
  • 391. There is a better way! § Electron Transport Chain u series of proteins built into inner mitochondrial membrane § along cristae § transport proteins & enzymes u transport of electrons down ETC linked to pumping of H+ to create H+ gradient u yields ~36 ATP from 1 glucose! u only in presence of O2 (aerobic respiration)AP Biology 54
  • 392. There is a better way! § Electron Transport Chain u series of proteins built into inner mitochondrial membrane § along cristae § transport proteins & enzymes u transport of electrons down ETC linked to pumping of H+ to create H+ gradient u yields ~36 ATP from 1 glucose! u only in presence of O2 (aerobic respiration) That sounds moreAP Biology like it! 54
  • 393. There is a better way! § Electron Transport Chain u series of proteins built into inner mitochondrial membrane § along cristae § transport proteins & enzymes u transport of electrons down ETC linked to pumping of H+ to create H+ gradient u yields ~36 ATP from 1 glucose! u only in presence of O2 (aerobic respiration) That sounds more O2AP Biology like it! 54
  • 394. MitochondriaAP Biology 55
  • 395. Mitochondria § Double membrane u outer membrane u inner membrane § highly folded cristae § enzymes & transport proteins u intermembrane space § fluid-filled space between membranesAP Biology 55
  • 396. Mitochondria § Double membrane u outer membrane u inner membrane § highly folded cristae § enzymes & transport proteins u intermembrane space § fluid-filled space between membranes Oooooh! Form fitsAP Biology function! 55
  • 397. Mitochondria § Double membrane u outer membrane u inner membrane § highly folded cristae § enzymes & transport proteins u intermembrane space § fluid-filled space between membranes Oooooh! Form fitsAP Biology function! 55
  • 398. Mitochondria § Double membrane u outer membrane u inner membrane § highly folded cristae § enzymes & transport proteins u intermembrane space § fluid-filled space between membranes Oooooh! Form fitsAP Biology function! 55
  • 399. Electron Transport ChainAP Biology 56
  • 400. Electron Transport ChainAP Biology 56
  • 401. Electron Transport ChainAP Biology 56
  • 402. Electron Transport Chain Inner mitochondrial membraneAP Biology 56
  • 403. Electron Transport Chain Inner mitochondrial Intermembrane space membraneAP Biology 56
  • 404. Electron Transport Chain Inner mitochondrial Intermembrane space membrane Mitochondrial matrixAP Biology 56
  • 405. Electron Transport Chain Inner mitochondrial Intermembrane space membrane NADH dehydrogenase Mitochondrial matrixAP Biology 56
  • 406. Electron Transport Chain Inner mitochondrial Intermembrane space membrane NADH cytochrome dehydrogenase bc complex Mitochondrial matrixAP Biology 56
  • 407. Electron Transport Chain Inner mitochondrial Intermembrane space membrane NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex Mitochondrial matrixAP Biology 56
  • 408. Electron Transport Chain Inner mitochondrial Intermembrane space membrane Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex Mitochondrial matrixAP Biology 56
  • 409. Electron Transport Chain Inner mitochondrial Intermembrane space membrane C Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex Mitochondrial matrixAP Biology 56
  • 410. Remember the Electron Carriers? glucose G3PAP Biology 57
  • 411. Remember the Electron Carriers? glucoseGlycolysis G3PAP Biology 57
  • 412. Remember the Electron Carriers? glucoseGlycolysis G3P 2 NADHAP Biology 57
  • 413. Remember the Electron Carriers? glucose Krebs cycleGlycolysis G3P 2 NADHAP Biology 57
  • 414. Remember the Electron Carriers? glucose Krebs cycleGlycolysis G3P 2 NADH 8 NADH 2 FADH2AP Biology 57
  • 415. Remember the Electron Carriers? glucose Krebs cycleGlycolysis G3P 2 NADH 8 NADH 2 FADH2 Time to break openthe piggybank!AP Biology 57
  • 416. Electron Transport Chain intermembrane space inner mitochondrial C membrane Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 417. Electron Transport ChainNADH → NAD+ + H intermembrane space inner mitochondrial C membrane Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 418. Electron Transport ChainNADH → NAD+ + H intermembrane space inner mitochondrial C membrane Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 419. Electron Transport ChainNADH → NAD+ + H e intermembrane p space inner mitochondrial C membrane Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 420. Electron Transport ChainNADH → NAD+ + H e intermembrane p space inner mitochondrial C membrane Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 421. Electron Transport ChainNADH → NAD+ + H e intermembrane p space inner mitochondrialH → e- + H+ C membrane Q NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 422. Electron Transport ChainNADH → NAD+ + H e intermembrane p space inner mitochondrialH → e- + H+ C membrane Q NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 423. Electron Transport ChainNADH → NAD+ + H e intermembrane p space inner mitochondrialH → e- + H+ C membrane Q NADH H NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 424. Electron Transport ChainNADH → NAD+ + H e intermembrane p space inner mitochondrialH → e- + H+ C membrane Q e– NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 425. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ inner mitochondrialH → e- + H+ C membrane Q e– NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 426. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ inner mitochondrialH → e- + H+ C membrane Q e– e– NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 427. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 428. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 429. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 430. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– FADH2 FAD NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 431. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– H e– FADH2 FAD NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 432. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– FADH2 FAD NADH NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 433. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– FADH2 FAD NADH O2 NAD+ NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 434. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– FADH2 FAD NADH 1 NAD+ 2H+ + 2 O2 NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 435. Electron Transport ChainNADH → NAD+ + H e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– FADH2 FAD NADH 1 NAD+ 2H+ + 2 O2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 436. Electron Transport ChainNADH → NAD+ + H Building proton gradient! e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– FADH2 FAD NADH 1 NAD+ 2H+ + 2 O2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology 58
  • 437. Electron Transport ChainNADH → NAD+ + H Building proton gradient! e intermembrane p space H+ H+ H+ inner mitochondrialH → e- + H+ C membrane Q e– e– e– FADH2 FAD NADH 1 NAD+ 2H+ + 2 O2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex mitochondrial matrixAP Biology What powers the proton (H+) pumps?… 58
  • 438. Stripping H from Electron Carriers H+ H+ H+ C Q e– e– e– FADH2 FAD NADH NAD+ 2H+ + 1 O2 2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complexAP Biology 59
  • 439. Stripping H from Electron Carriers § Electron carriers pass electrons & H+ to ETC u H cleaved off NADH & FADH2 u electrons stripped from H atoms → H+ (protons) § electrons passed from one electron carrier to next in mitochondrial membrane (ETC) § flowing electrons = energy to do work u transport proteins in membrane pump H+ (protons) across inner membrane to intermembrane space H+ H+ H+ C Q e– e– e– FADH2 FAD NADH NAD+ 2H+ + 1 O2 2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complexAP Biology 59
  • 440. Stripping H from Electron Carriers § Electron carriers pass electrons & H+ to ETC u H cleaved off NADH & FADH2 u electrons stripped from H atoms → H+ (protons) § electrons passed from one electron carrier to next in mitochondrial membrane (ETC) § flowing electrons = energy to do work u transport proteins in membrane pump H+ (protons) across inner membrane to intermembrane space H++ H H+ H+ C Q e– e– e– FADH2 FAD NADH NAD+ 2H+ + 1 O2 2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complexAP Biology 59
  • 441. Stripping H from Electron Carriers § Electron carriers pass electrons & H+ to ETC u H cleaved off NADH & FADH2 u electrons stripped from H atoms → H+ (protons) § electrons passed from one electron carrier to next in mitochondrial membrane (ETC) § flowing electrons = energy to do work u transport proteins in membrane pump H+ (protons) across inner membrane to intermembrane space H++ H H++ H H+ C Q e– e– e– FADH2 FAD NADH NAD+ 2H+ + 1 O2 2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complexAP Biology 59
  • 442. Stripping H from Electron Carriers § Electron carriers pass electrons & H+ to ETC u H cleaved off NADH & FADH2 u electrons stripped from H atoms → H+ (protons) § electrons passed from one electron carrier to next in mitochondrial membrane (ETC) § flowing electrons = energy to do work u transport proteins in membrane pump H+ (protons) across inner membrane to intermembrane space H++ H H++ H H++ H C Q e– e– e– FADH2 FAD NADH NAD+ 2H+ + 1 O2 2 H 2O NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complexAP Biology 59
  • 443. Stripping H from Electron Carriers § Electron carriers pass electrons & H+ to ETC u H cleaved off NADH & FADH2 u electrons stripped from H atoms → H+ (protons) § electrons passed from one electron carrier to next in mitochondrial membrane (ETC) § flowing electrons = energy to do work u transport proteins in membrane pump H+ (protons) across inner membrane to intermembrane space H+ H+ H+ H+ H++ H H++ H H++ H H+ H+ H H+ + C Q e– e– e– FADH2 FAD ADP NADH NAD+ 2H+ +1 2 O2 H 2O + Pi NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complexAP Biology H+ 59
  • 444. Stripping H from Electron Carriers § Electron carriers pass electrons & H+ to ETC u H cleaved off NADH & FADH2 u electrons stripped from H atoms → H+ (protons) § electrons passed from one electron carrier to next in mitochondrial membrane (ETC) § flowing electrons = energy to do work u transport proteins in membrane pump H+ (protons) across inner membrane to intermembrane space H+ H+ H+ H+ H++ H H++ H H++ H H+ H+ H H+ + C Q e– e– e– FADH2 FAD ADP NADH NAD+ 2H+ +1 2 O2 H 2O + Pi NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex ATPAP Biology H+ 59
  • 445. Stripping H from Electron Carriers § Electron carriers pass electrons & H+ to ETC u H cleaved off NADH & FADH2 u electrons stripped from H atoms → H+ (protons) § electrons passed from one electron carrier to next in mitochondrial membrane (ETC) § flowing electrons = energy to do work u transport proteins in membrane pump H+ (protons) across inner membrane to intermembrane space H+ H+ H+ H+ TA-DA!! H++ H H++ H H++ H H+ H+ H H+ + Moving electrons do the work! C Q e– e– e– FADH2 FAD ADP NADH NAD+ 2H+ +1 2 O2 H 2O + Pi NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex ATPAP Biology H+ 59
  • 446. AP Biology 60
  • 447. But what “pulls” theelectrons down the ETC?AP Biology 60
  • 448. But what “pulls” theelectrons down the ETC? O2AP Biology 60
  • 449. But what “pulls” theelectrons down the ETC? O2AP Biology 60
  • 450. But what “pulls” theelectrons down the ETC? H 2O O2AP Biology 60
  • 451. But what “pulls” theelectrons down the ETC? H 2O O2 electrons flow downhillAP Biology to O2 60
  • 452. But what “pulls” theelectrons down the ETC? H 2O O2 electrons flow downhillAP Biology to O2 oxidative phosphorylation 60
  • 453. Electrons flow downhillAP Biology 61
  • 454. Electrons flow downhill § Electrons move in steps from carrier to carrier downhill to oxygen u each carrier more electronegative u controlled oxidation u controlled release of energyAP Biology 61
  • 455. Electrons flow downhill § Electrons move in steps from carrier to carrier downhill to oxygen u each carrier more electronegative u controlled oxidation u controlled release of energy make ATP instead of fire!AP Biology 61
  • 456. We did it! H+ H+ H+ H+ H+ H+ H+ H+ ADP + Pi H+AP Biology 62
  • 457. We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient ADP + Pi H+AP Biology 62
  • 458. We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient § Allow the protons to flow through ATP synthase ADP + Pi H+AP Biology 62
  • 459. We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient § Allow the protons to flow through ATP synthase § Synthesizes ATP ADP + Pi H+AP Biology 62
  • 460. We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient § Allow the protons to flow through ATP synthase § Synthesizes ATP ADP + Pi H+AP Biology 62
  • 461. We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient § Allow the protons to flow through ATP synthase § Synthesizes ATP ADP + Pi → ATP ADP + Pi H+AP Biology 62
  • 462. We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient § Allow the protons to flow through ATP synthase § Synthesizes ATP ADP + Pi → ATP ADP + Pi Are we there yet? H+AP Biology 62
  • 463. We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient § Allow the protons to flow through ATP synthase § Synthesizes ATP ADP + Pi → ATP ADP + Pi Are we ATP there yet? H+AP Biology 62
  • 464. “proton-motive” force We did it! H+ H+ H+ H+ § Set up a H+ H+ H+ H+ H+ gradient § Allow the protons to flow through ATP synthase § Synthesizes ATP ADP + Pi → ATP ADP + Pi Are we ATP there yet? H+AP Biology 62
  • 465. ChemiosmosisAP Biology 63
  • 466. Chemiosmosis § The diffusion of ions across a membrane u build up of proton gradient just so H+ could flow through ATP synthase enzyme to build ATPAP Biology 63
  • 467. Chemiosmosis § The diffusion of ions across a membrane u build up of proton gradient just so H+ could flow through ATP synthase enzyme to build ATP Chemiosmosis links the Electron Transport Chain to ATP synthesisAP Biology 63
  • 468. Chemiosmosis § The diffusion of ions across a membrane u build up of proton gradient just so H+ could flow through ATP synthase enzyme to build ATP Chemiosmosis links the Electron Transport Chain to ATP synthesis So that’s the point!AP Biology 63
  • 469. Pyruvate from Intermembrane Inner H+ cytoplasm space mitochondrial H+ membrane Electron transport C system Q NADH e- H+ Acetyl-CoA e- NADH e- H 2O Krebs e- 1 O cycle FADH2 2 +2 O2 2H+ CO2 H+ ATP H+ ATP ATP Mitochondrial synthase matrixAP Biology 64
  • 470. Pyruvate from Intermembrane Inner H+ cytoplasm space mitochondrial H+ membrane Electron transport C system Q NADH e- H+ 1. Electrons are harvested e- Acetyl-CoA and carried to the transport system. NADH e- H 2O Krebs e- 1 O cycle FADH2 2 +2 O2 2H+ CO2 H+ ATP H+ ATP ATP Mitochondrial synthase matrixAP Biology 64
  • 471. Pyruvate from Intermembrane Inner H+ cytoplasm space mitochondrial H+ membrane Electron transport C system Q NADH e- 2. Electrons H+ provide energy 1. Electrons are harvested to pump e- Acetyl-CoA and carried to the protons across transport system. the membrane. NADH e- H 2O Krebs e- 1 O cycle FADH2 2 +2 O2 2H+ CO2 H+ ATP H+ ATP ATP Mitochondrial synthase matrixAP Biology 64
  • 472. Pyruvate from Intermembrane Inner H+ cytoplasm space mitochondrial H+ membrane Electron transport C system Q NADH e- 2. Electrons H+ provide energy 1. Electrons are harvested to pump e- Acetyl-CoA and carried to the protons across transport system. the membrane. NADH e- H 2O Krebs e- 3. Oxygen joins 1 O cycle FADH2 with protons to 2 +2 O2 form water. 2H+ CO2 H+ ATP H+ ATP ATP Mitochondrial synthase matrixAP Biology 64
  • 473. Pyruvate from Intermembrane Inner H+ cytoplasm space mitochondrial H+ membrane Electron transport C system Q NADH e- 2. Electrons H+ provide energy 1. Electrons are harvested to pump e- Acetyl-CoA and carried to the protons across transport system. the membrane. NADH e- H 2O Krebs e- 3. Oxygen joins 1 O cycle FADH2 with protons to 2 +2 O2 form water. 2H+ CO2 H+ ATP H+ ATP 4. Protons diffuse back in down their concentration ATP Mitochondrial gradient, driving the synthase matrix synthesis of ATP.AP Biology 64
  • 474. Pyruvate from Intermembrane Inner H+ cytoplasm space mitochondrial H+ membrane Electron transport C system Q NADH e- 2. Electrons H+ provide energy 1. Electrons are harvested to pump e- Acetyl-CoA and carried to the protons across transport system. the membrane. NADH e- H 2O Krebs e- 3. Oxygen joins 1 O cycle FADH2 with protons to 2 +2 O2 form water. 2H+ CO2 H+ ATP H+ ATP ATP 4. Protons diffuse back in down their concentration ATP Mitochondrial gradient, driving the synthase matrix synthesis of ATP.AP Biology 64
  • 475. Cellular respirationAP Biology 65
  • 476. Cellular respiration 2 ATPAP Biology 65
  • 477. Cellular respiration 2 ATP + 2 ATPAP Biology 65
  • 478. Cellular respiration 2 ATP + 2 ATP + ~36 ATPAP Biology 65
  • 479. ~4 Cellular respiration 0A TP 2 ATP + 2 ATP + ~36 ATPAP Biology 65
  • 480. Summary of cellular respirationAP Biology 66
  • 481. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATPAP Biology 66
  • 482. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATP § Where did the glucose come from?AP Biology 66
  • 483. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATP § Where did the glucose come from? § Where did the O2 come from?AP Biology 66
  • 484. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATP § Where did the glucose come from? § Where did the O2 come from? § Where did the CO2 come from?AP Biology 66
  • 485. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATP § Where did the glucose come from? § Where did the O2 come from? § Where did the CO2 come from? § Where did the CO2 go?AP Biology 66
  • 486. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATP § Where did the glucose come from? § Where did the O2 come from? § Where did the CO2 come from? § Where did the CO2 go? § Where did the H2O come from?AP Biology 66
  • 487. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATP § Where did the glucose come from? § Where did the O2 come from? § Where did the CO2 come from? § Where did the CO2 go? § Where did the H2O come from? § Where did the ATP come from?AP Biology 66
  • 488. Summary of cellular respiration C6H12O6 + 6O2 → 6CO2 + 6H2O + ~40 ATP § Where did the glucose come from? § Where did the O2 come from? § Where did the CO2 come from? § Where did the CO2 go? § Where did the H2O come from? § Where did the ATP come from? § What else is produced that is not listed in this equation?AP Biology 66
  • 489. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain?AP Biology 67
  • 490. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2AP Biology 67
  • 491. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable?AP Biology 67
  • 492. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable? § ETC backs upAP Biology 67
  • 493. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chainAP Biology 67
  • 494. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chain uNADH & FADH2 can’t unload HAP Biology 67
  • 495. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chain uNADH & FADH2 can’t unload H § ATP production ceasesAP Biology 67
  • 496. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chain uNADH & FADH2 can’t unload H § ATP production ceases § cells run out of energyAP Biology 67
  • 497. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chain uNADH & FADH2 can’t unload H § ATP production ceases § cells run out of energyAP Biology § and you die! 67
  • 498. Taking it beyond… § What is the final electron acceptor in Electron Transport Chain? O2 § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chain uNADH & FADH2 can’t unload H § ATP production ceases § cells run out of energyAP Biology § and you die! 67
  • 499. Taking it beyond… H+ H+ H+ § What is the final electron acceptor in Q e– C Electron Transport Chain? e– FADH2 FAD e– NADH 2H+ +1 O2 H 2O O2 NAD+ 2 NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chain uNADH & FADH2 can’t unload H § ATP production ceases § cells run out of energyAP Biology § and you die! 67
  • 500. Taking it beyond… H+ H+ H+ § What is the final electron acceptor in Q e– C Electron Transport Chain? e– FADH2 FAD e– NADH 2H+ +1 O2 H 2O O2 NAD+ 2 NADH cytochrome cytochrome c dehydrogenase bc complex oxidase complex § So what happens if O2 unavailable? § ETC backs up unothing to pull electrons down chain uNADH & FADH2 can’t unload H § ATP production ceases § cells run out of energyAP Biology § and you die! 67
  • 501. AP Biology 2006-2007 68
  • 502. What’s the point?AP Biology 2006-2007 68
  • 503. What’s the point? The point is to make ATP! ATPAP Biology 2006-2007 68
  • 504. Cellular Respiration Other Metabolites & Control of RespirationAP Biology 2006-2007 69
  • 505. Cellular respirationAP Biology 70
  • 506. Cellular respirationAP Biology 70
  • 507. Beyond glucose: Other carbohydratesAP Biology 71
  • 508. Beyond glucose: Other carbohydrates § Glycolysis accepts a wide range of carbohydrates fuelsAP Biology 71
  • 509. Beyond glucose: Other carbohydrates § Glycolysis accepts a wide range of carbohydrates fuels polysaccharides → → → glucose hydrolysisAP Biology 71
  • 510. Beyond glucose: Other carbohydrates § Glycolysis accepts a wide range of carbohydrates fuels polysaccharides → → → glucose hydrolysis § ex. starch, glycogenAP Biology 71
  • 511. Beyond glucose: Other carbohydrates § Glycolysis accepts a wide range of carbohydrates fuels polysaccharides → → → glucose hydrolysis § ex. starch, glycogen other 6C sugars → → → glucose modifiedAP Biology 71
  • 512. Beyond glucose: Other carbohydrates § Glycolysis accepts a wide range of carbohydrates fuels polysaccharides → → → glucose hydrolysis § ex. starch, glycogen other 6C sugars → → → glucose modified § ex. galactose, fructoseAP Biology 71
  • 513. Beyond glucose: ProteinsAP Biology 72
  • 514. Beyond glucose: Proteins proteins → → → → → amino acids hydrolysisAP Biology 72
  • 515. Beyond glucose: Proteins proteins → → → → → amino acids hydrolysis H O H | || N —C— C—OH H | RAP Biology 72
  • 516. Beyond glucose: Proteins proteins → → → → → amino acids hydrolysis H O H | || N —C— C—OH H | RAP Biology 72
  • 517. Beyond glucose: Proteins proteins → → → → → amino acids hydrolysis H O H | || N —C— C—OH glycolysis H | Krebs cycle R 2C sugar = carbon skeleton = enters glycolysis or Krebs cycle atAP Biology different stages 72
  • 518. Beyond glucose: Proteins proteins → → → → → amino acids hydrolysis H O H | || N —C— C—OH glycolysis H | Krebs cycle R 2C sugar = carbon skeleton = enters glycolysis or Krebs cycle atAP Biology different stages 72
  • 519. Beyond glucose: Proteins proteins → → → → → amino acids hydrolysis H O H | || waste N —C— C—OH glycolysis H | Krebs cycle R amino group = 2C sugar = waste product carbon skeleton = excreted as enters glycolysis or ammonia, urea, Krebs cycle atAP Biologyuric acid or different stages 72
  • 520. Beyond glucose: FatsAP Biology 73
  • 521. Beyond glucose: Fats fats → → → → → glycerol + fatty acids hydrolysisAP Biology 73
  • 522. Beyond glucose: Fats fats → → → → → glycerol + fatty acids hydrolysis glycerol (3C) → → G3P → → glycolysisAP Biology 73
  • 523. Beyond glucose: Fats fats → → → → → glycerol + fatty acids hydrolysis glycerol (3C) → → G3P → → glycolysis3C glycerol entersglycolysis as G3P AP Biology 73
  • 524. Beyond glucose: Fats fats → → → → → glycerol + fatty acids hydrolysis glycerol (3C) → → G3P → → glycolysis fatty acids → 2C acetyl → acetyl → Krebs groups coA cycle3C glycerol entersglycolysis as G3P AP Biology 73
  • 525. Beyond glucose: Fats fats → → → → → glycerol + fatty acids hydrolysis glycerol (3C) → → G3P → → glycolysis fatty acids → 2C acetyl → acetyl → Krebs groups coA cycle3C glycerol 2C fatty acids enters enterglycolysis Krebs cycle as G3P AP Biology as acetyl CoA 73
  • 526. Beyond glucose: Fats fats → → → → → glycerol + fatty acids hydrolysis glycerol (3C) → → G3P → → glycolysis fatty acids → 2C acetyl → acetyl → Krebs groups coA cycle3C glycerol 2C fatty acids enters enterglycolysis Krebs cycle as G3P AP Biology as acetyl CoA 73
  • 527. Carbohydrates vs. FatsAP Biology 74
  • 528. Carbohydrates vs. Fats fatAP Biology 74
  • 529. Carbohydrates vs. Fats fat carbohydrateAP Biology 74
  • 530. Carbohydrates vs. Fats § Fat generates 2x ATP vs. carbohydrate u more C in gram of fat § more energy releasing bonds u more O in gram of carbohydrate § so it’s already partly oxidized § less energy to release fat carbohydrateAP Biology 74
  • 531. Carbohydrates vs. Fats § Fat generates 2x ATP vs. carbohydrate u more C in gram of fat That’s why § more energy releasing bonds it takes so much to lose a u more O in gram of carbohydrate pound a fat! § so it’s already partly oxidized § less energy to release fat carbohydrateAP Biology 74
  • 532. Metabolism CO2AP Biology 75
  • 533. Metabolism § Coordination of chemical processes across whole organism u digestion § catabolism when organism needs energy or needs raw materials u synthesis § anabolism when organism has enough energy & a supply of raw materials u by regulating enzymes § feedback mechanisms CO2 § raw materials stimulate production § products inhibit further productionAP Biology 75
  • 534. Metabolism CO2AP Biology 76
  • 535. Metabolism § Digestion u digestion of carbohydrates, fats & proteins § all catabolized through same pathways § enter at different points u cell extracts energy from every source CO2AP Biology 76
  • 536. Metabolism § Digestion u digestion of carbohydrates, fats & proteins § all catabolized through same pathways § enter at different points u cell extracts energy from every source CO2AP Biology 76
  • 537. Metabolism § Digestion u digestion of carbohydrates, fats & proteins § all catabolized through same pathways § enter at different points u cell extracts energy from every source CO2AP Biology 76
  • 538. Metabolism § Digestion u digestion of carbohydrates, fats & proteins § all catabolized through same pathways § enter at different points u cell extracts energy from every source CO2AP Biology 76
  • 539. Metabolism § Digestion u digestion of carbohydrates, fats & proteins § all catabolized through same pathways § enter at different points u cell extracts energy from every source CO2AP Biology 76
  • 540. Metabolism § Digestion u digestion of carbohydrates, fats & proteins § all catabolized through same pathways § enter at different points u cell extracts energy from every source Cells are versatile & CO2 selfish!AP Biology 76
  • 541. MetabolismAP Biology 77
  • 542. Metabolism § Synthesis u enough energy? build stuff! u cell uses points in glycolysis & Krebs cycle as links to pathways for synthesis § run pathways “backwards” w have extra fuel, build fat!AP Biology 77
  • 543. Metabolism § Synthesis u enough energy? build stuff! u cell uses points in glycolysis & Krebs cycle as links to pathways for synthesis § run pathways “backwards” w have extra fuel, build fat!AP Biology 77
  • 544. Metabolism § Synthesis u enough energy? build stuff! u cell uses points in glycolysis & Krebs cycle as links to pathways for synthesis § run pathways “backwards” w have extra fuel, build fat!pyruvate → → glucoseAP Biology 77
  • 545. Metabolism § Synthesis u enough energy? build stuff! u cell uses points in glycolysis & Krebs cycle as links to pathways for synthesis § run pathways “backwards” w have extra fuel, build fat!pyruvate → → glucoseKrebs cycle →→ aminointermediaries acidsAP Biology 77
  • 546. Metabolism § Synthesis u enough energy? build stuff! u cell uses points in glycolysis & Krebs cycle as links to pathways for synthesis § run pathways “backwards” w have extra fuel, build fat!pyruvate → → glucoseKrebs cycle →→ aminointermediaries acids acetyl CoAAP Biology → → fatty acids 77
  • 547. Metabolism § Synthesis u enough energy? build stuff! u cell uses points in glycolysis & Krebs cycle as links to pathways for synthesis § run pathways “backwards” w have extra fuel, build fat! Cells are