Your SlideShare is downloading. ×
0
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Pend Fisika Zat Padat (4) indexing
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Pend Fisika Zat Padat (4) indexing

1,034

Published on

unj fmipa-fisika

unj fmipa-fisika

Published in: Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
1,034
On Slideshare
0
From Embeds
0
Number of Embeds
2
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. Pertemuan 4CRYSTAL INDEXING<br />IwanSugihartono, M.Si<br />JurusanFisika, FMIPA<br />UniversitasNegeri Jakarta<br />1<br />
  • 2. Crystals<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />2<br /><ul><li>Crystal structure basics
  • 3. unit cells
  • 4. symmetry
  • 5. lattices
  • 6. Diffraction
  • 7. how and why - derivation
  • 8. Some important crystal structures and properties
  • 9. close packed structures
  • 10. octahedral and tetrahedral holes
  • 11. basic structures
  • 12. ferroelectricity</li></li></ul><li>Objectives<br />By the end of this section you should:<br /><ul><li>understand the concept of planes in crystals
  • 13. know that planes are identified by their Miller Index and their separation, d
  • 14. be able to calculate Miller Indices for planes
  • 15. know and be able to use the d-spacing equation for orthogonal crystals
  • 16. understand the concept of diffraction in crystals
  • 17. be able to derive and use Bragg’s law</li></ul>06/01/2011<br />3<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 18. Lattice Planes and Miller Indices<br />Imagine representing a crystal structure on a grid (lattice) which is a 3D array of points (lattice points). Can imagine dividing the grid into sets of “planes” in different orientations<br />06/01/2011<br />4<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 19. All planes in a set are identical<br />The planes are “imaginary”<br />The perpendicular distance between pairs of adjacent planes is the d-spacing<br />Need to label planes to be able to identify them<br />Find intercepts on a,b,c: 1/4, 2/3, 1/2<br />Take reciprocals 4, 3/2, 2<br />Multiply up to integers: (8 3 4) [if necessary]<br />06/01/2011<br />5<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 20. Exercise - What is the Miller index of the plane below?<br />Find intercepts on a,b,c:<br />Take reciprocals<br />Multiply up to integers:<br />06/01/2011<br />6<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 21. General label is(h k l)which intersects at a/h, b/k, c/l <br />(hkl) is the MILLER INDEX of that plane (round brackets, no commas).<br />Plane perpendicular to y cuts at , 1, <br /> (0 1 0) plane<br />This diagonal cuts at 1, 1, <br /> (1 1 0) plane<br />NB an index 0 means that the plane is parallel to that axis<br />06/01/2011<br />7<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 22. Using the same set of axes draw the planes with the following Miller indices:<br />(0 0 1) <br />(1 1 1)<br />06/01/2011<br />8<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 23. Using the same set of axes draw the planes with the following Miller indices:<br />(0 0 2) <br />(2 2 2)<br />NOW THINK!! What does this mean?<br />06/01/2011<br />9<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 24. Planes - conclusions 1<br />Miller indices define the orientation of the plane within the unit cell<br />The Miller Index defines a set of planes parallel to one another (remember the unit cell is a subset of the “infinite” crystal<br />(002) planes are parallel to (001) planes, and so on<br />06/01/2011<br />10<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 25. d-spacing formula<br />For orthogonal crystal systems (i.e. ===90) :-<br />For cubic crystals (special case of orthogonal) a=b=c :-<br />e.g. for (1 0 0) d = a<br /> (2 0 0) d = a/2<br /> (1 1 0) d = a/2 etc.<br />06/01/2011<br />11<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 26. A cubic crystal has a=5.2 Å (=0.52nm). Calculate the d-spacing of the (1 1 0) plane<br />A tetragonal crystal has a=4.7 Å, c=3.4 Å. Calculate the separation of the:<br />(1 0 0)<br />(0 0 1)<br />(1 1 1) planes<br />06/01/2011<br />12<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 27. Question 2 in handout:<br />If a = b = c = 8 Å, find d-spacings for planes with Miller indices (1 2 3)<br />Calculate the d-spacings for the same planes in a crystal with unit cell a = b = 7 Å, c = 9 Å.<br />Calculate the d-spacings for the same planes in a crystal with unit cell a = 7 Å, b = 8 Å, c = 9 Å.<br />06/01/2011<br />13<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 28. X-ray Diffraction<br />06/01/2011<br />14<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 29. Diffraction - an optical grating<br />Path difference XY between diffracted beams 1 and 2:<br />sin = XY/a<br /> XY = a sin <br />For 1 and 2 to be in phase and give constructive interference, XY = , 2, 3, 4…..n<br />so a sin  = n where n is the order of diffraction<br />06/01/2011<br />15<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 30. Consequences: maximum value of  for diffraction<br />sin = 1  a = <br />Realistically, sin &lt;1  a &gt; <br />So separation must be same order as, but greater than, wavelength of light.<br />Thus for diffraction from crystals:<br />Interatomic distances 0.1 - 2 Å<br />so  = 0.1 - 2 Å<br />X-rays, electrons, neutrons suitable<br />06/01/2011<br />16<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 31. Diffraction from crystals<br />X-ray Tube<br />Detector<br />?<br />06/01/2011<br />17<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 32. Beam 2 lags beam 1 by XYZ = 2d sin <br />so 2d sin  = nBragg’s Law<br />06/01/2011<br />18<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 33. e.g. X-rays with wavelength 1.54Å are reflected from planes with d=1.2Å. Calculate the Bragg angle, , for constructive interference.<br /> = 1.54 x 10-10 m, d = 1.2 x 10-10 m, =?<br />n=1 :  = 39.9°<br />n=2 : X (n/2d)&gt;1<br />2d sin  = n<br />We normally set n=1 and adjust Miller indices, to give <br />2dhkl sin  = <br />06/01/2011<br />19<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 34. Example of equivalence of the two forms of Bragg’s law:<br />Calculate  for =1.54 Å, cubic crystal, a=5Å<br />2d sin  = n<br />(1 0 0) reflection, d=5 Å<br />n=1, =8.86o<br />n=2, =17.93o<br />n=3, =27.52o<br />n=4, =38.02o<br />n=5, =50.35o<br />n=6, =67.52o<br />no reflection for n7<br />(2 0 0) reflection, d=2.5 Å<br />n=1, =17.93o<br />n=2, =38.02o<br />n=3, =67.52o<br />no reflection for n4<br />06/01/2011<br />20<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 35. Use Bragg’s law and the d-spacing equation to solve a wide variety of problems<br />2d sin  = n<br />or<br />2dhkl sin  = <br />06/01/2011<br />21<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 36. Combining Bragg and d-spacing equation<br />X-rays with wavelength 1.54 Å are “reflected” from the <br />(1 1 0) planes of a cubic crystal with unit cell a = 6 Å. Calculate the Bragg angle, , for all orders of reflection, n.<br />d = 4.24 Å<br />06/01/2011<br />22<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 37. d = 4.24 Å<br />n = 1 :  = 10.46°<br />n = 2 :  = 21.30°<br />n = 3 :  = 33.01°<br />n = 4 :  = 46.59°<br />n = 5 :  = 65.23°<br />= (1 1 0)<br />= (2 2 0)<br />= (3 3 0)<br />= (4 4 0)<br />= (5 5 0)<br />2dhkl sin  = <br />06/01/2011<br />23<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 38. Summary<br /><ul><li>We can imagine planes within a crystal
  • 39. Each set of planes is uniquely identified by its Miller index (h k l)
  • 40. We can calculate the separation, d, for each set of planes (h k l)
  • 41. Crystals diffract radiation of a similar order of wavelength to the interatomicspacings
  • 42. We model this diffraction by considering the “reflection” of radiation from planes - Bragg’s Law</li></ul>06/01/2011<br />24<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />
  • 43. THANK YOU<br />06/01/2011<br />© 2010 Universitas Negeri Jakarta | www.unj.ac.id |<br />25<br />

×