Fisika Zat Padat (1 - 4) a

  • 2,279 views
Uploaded on

unj fmipa-fisika

unj fmipa-fisika

More in: Education
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
No Downloads

Views

Total Views
2,279
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
0
Comments
0
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Pertemuan 1 - 4 FISIKA ZAT PADAT Iwan Sugihartono, M.Si Jurusan Fisika Fakultas Matematika dan Ilmu Pengetahuan Alam
  • 2. ENERGY BANDS
    • Bloch Functions
    • Nearly Free Electron Model
    • Kronig-Penney Model
    • Wave Equation of Electron in a Periodic Potential
    • Number of Orbitals in a Band
    02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 3. Some successes of the free electron model: C, κ , σ , χ , …
    • Some failures of the free electron model:
      • Distinction between metals, semimetals, semiconductors & insulators.
      • Positive values of Hall coefficent.
      • Relation between conduction & valence electrons.
      • Magnetotransport.
    Band model
    • New concepts:
    • Effective mass
    • Holes
    finite T impurities 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 4. NEARLY FREE ELECTRON MODEL Bragg reflection -> no wave-like solutions -> energy gap Bragg condition: -> 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 5. ORIGIN OF THE ENERGY GAP 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 6. BLOCH FUNCTIONS Periodic potential -> Translational symmetry -> Abelian group T = { T ( R l )} k -representation of T ( R l ) is Corresponding basis function for the Schrodinger equation must satisfy This can be satisfied by the Bloch function where or -> representative values of k are contained inside the Brillouin zone. Basis = 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 7. KRONIG-PENNEY MODEL Bloch theorem: ψ  (0) continuous: ψ  ( a ) continuous: ψ (0) continuous: ψ ( a ) continuous: 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 8. -> Delta function potential: Thus so that 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 9. 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 10. MATRIX MECHANICS Ansatz Secular equation: Matrix equation Orthonormal basis: Eigen-problem 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 11. FOURIER SERIES OF THE PERIODIC POTENTIAL ->  = Volume of crystal   volume of unit cell For a lattice with atomic basis at positions ρ α in the unit cell is the structural factor -> 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 12. PLANE WAVE EXPANSION Bloch function  = Volume of crystal Matrix form of the Schrodinger equation: (central equation) n = 0: 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 13. CRYSTAL MOMENTUM OF AN ELECTRON Properties of k : -> U = 0 -> Selection rules in collision processes -> crystal momentum of electron is  k . Eq., phonon absorption: 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 14. SOLUTION OF THE CENTRAL EQUATION 1-D lattice, only 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 15. KRONIG-PENNEY MODEL IN RECIPROCAL SPACE (only s = 0 term contributes) Eigen-equation: -> 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 16. -> (Kronig-Penney model) with 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 17. EMPTY LATTICE APPROXIMATION Free electron in vacuum: Free electron in empty lattice: Simple cubic 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 18. APPROXIMATE SOLUTION NEAR A ZONE BOUNDARY k near zone right boundary: Weak U , λ k  2 g >> U -> for E near λ k 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 19. K << g /2 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 20. 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 21. NUMBER OF ORBITALS IN A BAND Linear crystal of length L composed of of N cells of lattice constant a . Periodic boundary condition: -> -> N inequivalent values of k Generalization to 3-D crystals: Number of k points in 1 st BZ = Number of primitive cells -> Each primitive cell contributes one k point to each band. Crystals with odd numbers of electrons in primitive cell must be metals, e.g., alkali & noble metals metal semi-metal insulator 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |
  • 22. THANK YOU 02/02/11 © 2010 Universitas Negeri Jakarta | www.unj.ac.id |