Alg boole
Upcoming SlideShare
Loading in...5
×
 

Alg boole

on

  • 200 views

 

Statistics

Views

Total Views
200
Views on SlideShare
200
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Alg boole Alg boole Document Transcript

  • ´Algebras de Boole1. ´AlgebrasDefinici´on 1.1. Un conjunto A se dice que es un ´algebra si dispone de dos opera-ciones:+ : A × A −→ A · : A × A −→ A(a, b) −→ a + b (a, b) −→ a · bverificando:a) Elemento neutro para ambas operaciones: Existen 0 ∈ A y 1 ∈ A tales que:a + 0 = a y a · 1 = a para todo a ∈ A.b) Propiedad asociativa para ambas operaciones: Para todo a, b, c ∈ A se verificaque (a + b) + c = a + (b + c) y (a · b) · c = a · (b · c).c) Propiedad conmutativa para ambas operaciones: Para todo a, b ∈ A se verificaque a + b = b + a y a · b = b · a.d) Propiedad distributiva: El producto distribuye la suma, es decir :(a + b) · c = a · c + b · c para todo a, b, c ∈ A.e) Idempotencia: a2= a para todo a ∈ A.f) Absorci´on: a + 1 = 1 para todo a ∈ A.Si adem´as A verifica la propiedad de abajo entonces diremos que el ´algebra A esun ´algebra de Boole:g) Todo elemento a ∈ A tiene complementario; es decir existe ¯a ∈ A tal quea + ¯a = 1 y a · ¯a = 0.Observaci´on 1.2. En un ´algebra de Boole no se puede ni restar ni dividir y por tantono se verifica la ley de cancelaci´on; es decir no se verifica que{a + x = a + y ⇒ x = ya · x = a · y ⇒ x = yEjemplos1. Si X es un conjunto entonces el conjunto de los subconjuntos de X con lasoperaciones de uni´on e intersecci´on es un ´algebra de Boole. Lo denotaremos por P(X).2. A = { proposiciones } donde p + q = p y q ; p · q = p ´o q. (Ver el cuadro delfinal)3. A = { circuitos digitales } donde p + q = montar en serie p y q ; p · q = montaren paralelo p y q.El 0 de esta ´algebra es un circuito donde siempre pasa corriente. El 1 de esta´algebra es un circuito donde nunca pasa corriente.4. B = {0, 1} donde 0+0 = 0 ; 1+1 = 1 ; 0+1 = 1+0 = 1 = 1·1 ; 1·0 = 0·1 = 0.1
  • 5. Sea X es un conjunto y B = {0, 1}. Llamaremos funciones booleanas de Xy la denotaremos por FB(X) al conjunto de aplicaciones de X valoradas en B; esdecir FB(X) = { aplicaciones f : X → B} . Es un ´algebra donde las operaciones son:(f + g)(x) = f(x) + g(x) y (f · g)(x) = f(x) · g(x).Un ejemplo de estas funciones son las funciones caracter´ısticas: Si Y ⊂ X es unsubconjunto de X entonces la funci´on caracter´ıstica de Y esχY(x) ={1 si x /∈ Y0 si x ∈ YSe verifica que: χY+ χZ= χY ∩Zy χY· χZ= χY ∪Z1.1. ´Algebra de los polinomios booleanosSea W un conjunto, queremos construir el ´algebra de Boole libre generada porW ; es decir el conjunto de todas las expresiones algebraicas posibles construidas conlos elementos {x, ¯x}x∈W . A esta ´algebra la denotaremos por B[W] y la llamaremos´algebra libre generada por W o el ´algebra de polinomios booleanos de variables libresW.Definici´on 1.3. Construcci´on de B[W]: Supongamos que Wn = {x1, x2, . . . , xn} esfinito. Vamos a construir An = B[x1, . . . , xn] por inducci´on sobre n.Para n = 0, A0 = k y An = An−1[xn] = {a · xn + b · xn / a, b ∈ An−1} dondesus elementos se suman y multiplican como sigue : (a · xn + b · xn) + (c · xn + d · xn) =(a + c) · xn + (b + d) · xn y (a · xn + b · xn) · (c · xn + d · xn) = a · c · xn + b · d · xn.1 = 1 · xn + 1 · xn y 0 = 0 · xn + 0 · xn.An−1 ⊂ An porque a = a · xn + a · xn.Cuando W es infinito : W =∪Y ⊂WY donde Y recorre los subconjuntos finitosde W y se tiene que B[W] =∪Y ⊂WB[Y ].Se llama ´Algebra de Proposiciones de proposiciones elementales W al ´algebralibre B[W]. Se llama ´Algebra de Circuitos de interruptores W al ´algebra libre B[W].Observaci´on 1.4. Todo elemento p(x1, . . . , xn) ∈ B[x1, . . . , xn] puede pensarse comouna funci´on booleana en el conjunto de las sucesiones finitas de ceros y unos de longitudn como sigue:Bn p−→ B(a1, a2, . . . , an) −→ p(a1, a2, . . . , an)1.2. Propiedades de las ´algebrasProposici´on 1.5. Si A es un ´algebra se verifica:a) Para todo a ∈ A : a + a = a y a · 0 = 0.b) La suma distribuye al producto: a · b + c = (a + c) · (b + c).2
  • Demostraci´on:a) a + a = a + a2= a · (1 + a) = a · 1 = a.a · 0 = a · 0 + 1 · 0 = (a + 1) · 0 = 1 · 0 = 0.b) (a+c)·(b+c) = a·b+c·b+a·c+c2= a·b+c·b+a·c+c = a·b+c·(b+c+1) = a·b+c.Estas propiedades permiten deducir que si a un ´algebra A le intercambiamos lasoperaciones de suma y producto se obtiene a su vez otra ´algebra. Luego:Principio de dualidad: Todo enunciado para las ´algebras produce otro enunciadointercambiando + por · y 0 por 1 llamado enunciado dual.As´ı todo concepto tiene su concepto dual. Por ejemplo el concepto dual del 0 (ele-mento neutro con +) es el 1 (elemento neutro con el ·).Un enunciado es cierto si y solo si es cierto su enunciado dual.Proposici´on 1.6. Propiedades del complementarioa) Si existe el complementario de a es ´unico.b) a = a ; 0 = 1 ; 1 = 0.c) Leyes de De Morgan: Para todo a, b ∈ A se verifica que: a · b = a + b ya + b = a · b.Demostraci´on:a) Sea a′, a ∈ A tal que a + a′= 1 = a + a y a · a′= 0 = a · a. Se tieneque: a = 1 · a = (a + a′) · a = a · a + a′· a = a′· a. Del mismo modo se tiene quea′= a′· 1 = a′(a + a) = a′a + a′a = a′· a y se concluye que a′= a.b) El complementario de a es a porque a + a = 1 y a · a = 0.An´alogamente se comprueba que el complementario de 0 es 1 y el complementariode 1 es 0.c) Veamos que el complementario de a · b es a + b :a · b + (a + b) = (a + a) · (b + a) + b = 1 · (b + a + b) = 1 + a = 1(a · b) · (a + b) = b · a · a + a · b · b = 0 + 0 = 0Veamos que el complementario de a + b es a · b :a + b + (a · b) = a + (b + a) · (b + b) = a + (b + a) · 1 = 1 + b = 1(a + b) · (a · b) = a · a · b + a · b · b = 0 + 0 = 0Observaci´on 1.7. El concepto dual de “ser el complementario” es “ser el complemen-tario”. La segunda ley de De Morgan es el enunciado dual de la primera y no haciafalta, por tanto, demostrarla.3
  • 2. Producto de ´algebrasDefinici´on 2.1. Si A y B son dos ´algebras, se llama producto de A y B alconjunto A × B con la suma y producto como sigue:(a, b) + (c, d) = (a + c, b + d) ; (a, b) · (c, d) = (a · c, b · d)El producto de ´algebras de Boole es de Boole pues (a, b) = (a, b).As´ı Bn= {a1a2 . . . an / ai = 0 ´o 1} es un ´algebra de Boole.3. Morfismos de ´algebrasDefinici´on 3.1. Una aplicaci´on f : A → B entre dos ´algebras se dice que es unmorfismo de ´algebras si verifica:f(a + b) = f(a) + f(b)f(a · b) = f(a) · f(b)f(0) = 0 y f(1) = 1Si f : A → B es un morfismo entre ´algebras de Boole, entonces f(a) = f(a) paracada a ∈ A ya que f(a) + f(¯a) = f(a + ¯a) = f(1) = 1 y f(a) · f(¯a) = f(a · ¯a) =f(0) = 0.Un morfismo se dice que es isomorfismo cuando es inyectivo y epiyectivo.Un ejemplo de isomorfismo es ψ : P(X)∼→ FB(X) definida por ψ(Y ) = χY.Definici´on 3.2. Se llaman valoraciones de verdad de A a los morfismos de ´algebrasde A en B = {0, 1}. Pondremos { valoraciones de verdad de A } = V = Mor (A, B).Se llama tabla de verdad de a ∈ A a (v(a))v∈V siendo V el conjunto de todaslas valoraciones de verdad de A.Ejemplo: Dar una valoraci´on de verdad v : B[x1, . . . , xn] → B es equivalente a daruna aplicaci´on v : {x1, . . . , xn} → B ; es decir basta dar la imagen de las variables:v(xi) = ai pues si p(x1, . . . , xn) es un polinomio booleano, entonces v(p(x1, . . . , xn)) =p(a1, . . . , an).4. IdealesDefinici´on 4.1. Un subconjunto I de una ´algebra A se dice que es un ideal siverifica:a) Para todo x , y ∈ I se tiene que x + y ∈ I.b) Para todo x ∈ I y a ∈ A se tiene que a · x ∈ I.Ejemplos: Si a ∈ A es un elemento de un ´algebra, entonces (a) = {a · b / b ∈ A}es un ideal de A. Luego {0} = (0) y (1) = A son ideales.4
  • Los ideales de la forma (a) se llaman ideales principales.Si I y J son ideales, entonces la suma I + J = {x + y / x ∈ I, y ∈ J} ; el productoI · J = {n∑i=1xi · yi /xi ∈ I, yi ∈ J, n ∈ N} y la intersecci´on I ∩ J son ideales.Adem´as I · J = I ∩ J pues si x ∈ I ∩ J , entonces x = x · x ∈ I · J.Definici´on 4.2. Dado un conjunto Y ⊂ A, llamaremos ideal generado por Y a< Y >= {a1y1 + · · · + anyn / ai ∈ A, yj ∈ Y }.Proposici´on 4.3. Propiedades de los ideales principalesa) b ∈ (a) ⇐⇒ b = a · b ⇐⇒ ¯a · b = 0.b) (a) + (b) = (a + b) y (a) ∩ (b) = (a · b)c) (a) = (b) ⇐⇒ a = b.Demostraci´on: a) Si b = a · c, entonces a · b = a · a · c = a · c = b.Si b = ab, multiplicando por ¯a se obtiene que ¯a · b = ¯a · ab = 0.Si ¯a · b = 0, se tiene que b = b · 1 = b(a + ¯a) = ba + b¯a = ba.b) Es evidente que (a + b) ⊆ (a) + (b). Para ver que (a) + (b) ⊆ (a + b) basta verque a y b ∈ (a+b) : a·(a+b) = a2+a·b = a+a·b = a(1+b) = a. Lo mismo para b.c) (a) = (b) =⇒ a ∈ (b) y b ∈ (a) =⇒ a = a · b y b = b · a =⇒ a = b.Corolario 4.4. Si A es un ´algebra de Boole finita, todo ideal de A es principal.Demostraci´on: Sea I un ideal de un ´algebra finita. Si I = {a1, . . . , an}, entoncesI = (a1) + · · · + (an) = (a1 + · · · + an).4.1. DeduccionesDefinici´on 4.5. Sea (A, +, ·) un ´algebra de Boole. Diremos que a ≤ b si y solo sia · b = b. Por la proposici´on 4.3 a) es equivalente a que b ∈ (a) ´o a que ¯a · b = 0.En el ´algebra de conjuntos decir que a ≤ b es decir que a ⊆ b.En el ´algebra de proposiciones decir que p ≤ q es decir que p implica q ( o qse deduce de p ) o equivalentemente decir que “Si p entonces q” es una tautolog´ıa.Definici´on 4.6. Diremos que q se deduce de las premisas {p1, . . . , pn} si q sededuce de p = p1 y p2 y . . . y pn = p1 + p2 + · · · + pn.Diremos que q se deduce de un conjunto Y ⊂ A si q se deduce de alg´unsubconjunto finito de Y .Proposici´on 4.7. q se deduce de Y si y solo si q esta en el ideal generado por Y .Demostraci´on: q ∈< Y > ⇔ q = a1p1 + · · · + anpn para alg´un p1, . . . , pn ∈ Y ⇔q ∈< p1, . . . , pn >=< p1 + · · · + pn > para alg´un p1, . . . , pn ∈ Y ⇔ q se deduce dep1 + · · · + pn para alg´un p1, . . . , pn ∈ Y ⇔ q se deduce de {p1, . . . , pn} ⊆ Y .5
  • 5. Ideales primosDefinici´on 5.1. Un ideal I del ´algebra A se dice que es primo si verifica que:Si x · y ∈ I, entonces x ∈ I o y ∈ I.Definici´on 5.2. Un ideal I se dice m´aximo si no esta contenido en ning´un otro idealexcepto el mismo y el total.Lema 5.3. Sea I un ideal del ´algebra A. x + y ∈ I ⇐⇒ x ∈ I e y ∈ I.En particular a + b = 0 ⇐⇒ a = 0 y b = 0.Demostraci´on: Supongamos que x + y ∈ I. Entonces x · (x + y) = x2+ x · y =x · (1 + y) = x ∈ I. Lo mismo para y.Teorema 5.4. Relaci´on entre los ideales primos y las valoraciones. Sea A un´algebra. Si v : A → B es un morfismo de ´algebras entonces, pv = {a ∈ A, v(a) = 0}es un ideal primo y rec´ıprocamente si p es un ideal primo entonces vp : A → Bdefinido por vp(a) ={0 si a ∈ p1 si a /∈ pes un morfismo de ´algebras.Esto da un equivalencia entre el conjunto de los ideales primos de Ay el conjunto de las valoraciones de verdad de A.Demostraci´on: Se comprueba trivialmente que pv es un ideal y que es primo.vp es un morfismo de ´algebras:vp(x + y) = 0 ⇔ x + y ∈ plema 5.3⇔ x ∈ p e y ∈ p ⇔ vp(x) = 0 yvp(y) = 0 ⇔ vp(x) + vp(y) = 0.vp(x·y) = 1 ⇔ x·y /∈ p ⇔ x /∈ p e y /∈ p ⇔ vp(x) = 1 y vp(y) = 1 ⇔ vp(x)·vp(y) = 1.Para probar que es una equivalencia hay que comprobar que pvp = p y que vpv = v.Proposici´on 5.5. En un ´algebra, todo ideal m´aximo es primo y si el ´algebra es deBoole, entonces todo ideal primo es m´aximo.Demostraci´on: Sea I m´aximo y supongamos que x · y ∈ I y que x /∈ I. EntoncesI ⊂ I + (x). Por maximalidad I + (x) = A. Por tanto 1 = b + a · x donde b ∈ I.Luego y = y · 1 = y · (b + a · x) = y · b + a · (x · y) ∈ I.Supongamos ahora que A es de Boole. Sea pv un ideal primo y pv′ un idealm´aximo que lo contiene. Si pv ̸= pv′ , entonces existe a ∈ pv′ tal que a /∈ pv. Luegov′(a) = 0 y v(a) = 1. Por tanto v(¯a) = 0 y se tiene que ¯a ∈ pv ⊂ pv′ . Es decir1 = a + ¯a ∈ pv′ y por tanto pv′ = A.Teorema 5.6. Teorema de Euclides. Todo ideal, I, de un ´algebra de Boole es laintersecci´on de los ideales primos que lo contienen. Es decir: I = ∩I⊆pp.Demostraci´on: Es evidente que I ⊆ ∩I⊆pp . Veamos que ∩I⊆pp ⊆ I. Si a ∈ ∩I⊆pp,entonces I +(a) no esta contenido en ning´un ideal m´aximo. En efecto: Si I +(a) ⊂ p,entonces I ⊂ p y por tanto a ∈ p. Pero como a ∈ p, se tendr´ıa que 1 = a + a ∈ p.6
  • Por tanto I + (a) = A y se tiene que 1 = b + a · x donde b ∈ I. De aqu´ı seconcluye que a = a · 1 = a · b + a · a · x = a · b ∈ I.Corolario 5.7. Si I es un ideal de A , entonces I = ∩v(I)=0pv.Demostraci´on: Es el teorema de Euclides teniendo en cuenta que I ⊆ pv si y solosi v(I) = 0.Corolario 5.8. Dos elementos de un ´algebra de Boole son el mismo si y solo si tienenla misma tabla de verdad. Es decir:a = b ⇐⇒ v(a) = v(b) para toda valoraci´on v de A.Demostraci´on: Si v(a) = v(b) para toda valoraci´on v , entonces (a) = ∩v(a)=0pv =∩v(b)=0pv = (b) . Luego por la proposici´on 4.3 c), a = b.Corolario 5.9. Teorema de completitud de Godel: q es una deducci´on ´o con-clusi´on obtenida a partir del conjunto de premisas Y si y solo si v(q) = 0 para todavaloraci´on de verdad v de A tal que v(Y ) = 0.Demostraci´on: Ded(Y ) = ideal generado por Y = ∩v(Y )=0pv de donde se concluye.6. Teorema de representaci´on de StoneSea A un ´algebra de Boole y V el conjunto de sus valoraciones de verdad.La aplicaci´on ϕ : A → FB(V ) definida por: ϕ(a)(v) = v(a) es un morfismode ´algebras inyectivo. Por tanto, toda ´algebra de Boole es una sub´algebra defunciones booleanas o una sub´algebra de conjuntos.Adem´as si A es un ´algebra de Boole finita entonces ϕ es isomorfismo.Demostraci´on: : Para ver que es morfismo, hay que probar que:- ϕ(a + b) = ϕ(a) + ϕ(b).- ϕ(a · b) = ϕ(a) · ϕ(b).- ϕ(0) = 0 y ϕ(1) = 1.Veamos que son iguales aplic´andoselo a cada v ∈ V .- ϕ(a + b)(v) = v(a + b) = v(a) + v(b) = ϕ(a)(v) + ϕ(b)(v) = (ϕ(a) + ϕ(b))(v).- ϕ(a · b)(v) = v(a · b) = v(a) · v(b) = ϕ(a)(v) · ϕ(b)(v) = (ϕ(a) · ϕ(b))(v).- ϕ(0)(v) = v(0) = 0(v) y ϕ(1)(v) = v(1) = 1(v) .Es inyectivo porque si ϕ(a) = ϕ(b) entonces ϕ(a)(v) = ϕ(b)(v). Luego v(a) = v(b)para todo v ∈ V . Por el corolario 5.8 se concluye.Veamos que ϕ es epiyectiva cuando A es finita.Sea f : V → B una funci´on booleana y Y = {v1, . . . , vs ∈ V tales f(vi) = 0}.Sabemos que pv1 = (a1), pv2 = (a2), . . . , pvs = (as). Comprobemos que si a =a1 · a2 · . . . · as , entonces ϕ(a) = f.ϕ(a)(v) = v(a) = v(a1) · . . . · v(as) = 0 ⇔ v(ai) = 0 para alg´un i .7
  • f(v) = 0 ⇔ v = vi para alg´un i .Solo queda probar que v(ai) = 0 si y solo si v = vi. En efecto si v(ai) = 0, entoncespvi= (ai) ⊂ pv. Por maximalidad v = vi.Corolario 6.1. Toda ´algebra de Boole finita A tiene 2nelementos, siendo n eln´umero de valoraciones de verdad de A.Demostraci´on: A ≃ FB(V ) donde V es el conjunto de sus valoraciones de verdady |FB(V )| = 2|V |.Corolario 6.2. Dos ´algebras de Boole finitas con el mismo n´umero de elementos sonisomorfas.Demostraci´on: Por el corolario anterior, si dos ´algebras de Boole tienen el mismon´umero de elementos, sus respectivos conjuntos de valoraciones V y V ′tienen el mismon´umero de elementos y podemos establecer una biyecci´on φ : V → V ′. La aplicaci´onFB(V ′) → FB(V ) dada por f → f ◦ φ es un isomorfismo .7. DICCIONARIO L´OGICA-´ALGEBRAL´ogica conjunto de proposiciones P p ´o qp∨qp y qp∧qNo p¬ p“ falso”Contradicci´on“ verdad”tautolog´ıaSi p entonces qp→q´Algebra ´algebra de Boole P p · q p + q ¯p 1 0 ¯p · qL´ogica p si y solo si qp↔qPrincipio del tercero excluso Principio de no contradicci´on´Algebra p · q + p · q p · p = 0 p + p = 1L´ogica valoraci´on de verdad ´algebra de proposiciones proposici´on elemental´Algebra morfismo en {0, 1} ´algebra de polinomios booleanos variable libreL´ogica q se deduce del conjunto de premisas Y´Algebra q ∈ < Y >= ideal generado por YBIBLIOFRAF´IAGrimaldi Ralph. P. “Matem´atica discreta y combinatoria”. Addison -Wesley.Kenneth H.Rosen. “Matem´atica Discreta y sus aplicaciones”. McGrawHill.8