Hipotalamo y neuro hipofisis
Upcoming SlideShare
Loading in...5
×

Like this? Share it with your network

Share
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to comment
    Be the first to like this
No Downloads

Views

Total Views
554
On Slideshare
554
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
2
Comments
0
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. TEMA 2. HIPOTÁLAMO. NEUROHIPÓFISIS Funciones reguladoras del eje hipotálamo-hipofisario. Funciones hipotalámicas Secreciones hipotalámicas. Hormonas hipotalámicas y de la neurohipófisis: TRH, GnRH, GHRH, GHIH, CRH y PIH/PRF. ADH/AVP y Oxitocina. 1. OBJETIVOS • Conocer las principales funciones reguladoras del eje hipotálamo-hipofisario. • Conocer las funciones específicas del hipotálamo y comprender los mecanismos de regulación de la secreción hormonal hipotalámica. • Conocer las funciones y mecanismos de regulación de las principales hormonas hipotalámicas. 2. CONTENIDOS 2.1. Funciones reguladoras del eje hipotálamo-hipofisario El hipotálamo y la hipófisis forman una unidad fisiológica de gran importancia en relación con la síntesis de hormonas peptídicas. Entre las funciones que coordina este eje se encuentran el crecimiento somático, la maduración de las gónadas, la adaptación de la corteza adrenal al estrés, la secreción de leche, la liberación de hormonas tiroideas y la excreción de agua en el riñón. Además, el eje hipotálamo-hipofisario también contribuye a la regulación de la presión sanguínea y a la regulación del gasto energético global del organismo. 2.2. Funciones hipotalámicas Aunque clásicamente se había considerado a la hipófisis como la glándula maestra en el control endocrino del organismo, hoy día este papel se le atribuye principalmente al hipotálamo. Además de las funciones hipotalámicas ya mencionadas, relacionadas con la secreción de hormonas liberadoras o inhibidoras hacia la hipófisis, el hipotálamo es responsable del control de la temperatura corporal o de la regulación de la ingesta. Estas funciones las realiza gracias a las numerosas conexiones nerviosas que posee con centros superiores cerebrales y a su situación cercana a los canales de fluido cerebroespinal. Por este motivo, al hipotálamo se le considera como el principal intermediario entre el sistema nervioso central y el hormonal, es decir, como el transductor neuroendocrino por excelencia. 2.3. Secreciones hipotalámicas En el hipotálamo se liberan neurotransmisores, como la adrenalina, noradrenalina, serotonina acetilcolina y diversos neuropéptidos, que permiten la comunicación entre las diferentes neuronas. De entre todas estas sustancias, algunas funcionan además como neuromoduladores, es decir, que no actúan directamente como transmisores del impulso eléctrico de una célula a otra, sino que lo modulan, estimulándolo o inhibiéndolo. Entre los neuromoduladores más conocidos encontramos a los opiáceos endógenos, por ejemplo las encefalinas. Finalmente, el hipotálamo también secreta neurohormonas mediante neuronas que se comportan como verdaderas células endocrinas. Los gránulos secretores que contienen estas hormonas viajan a lo largo del cuerpo celular y del axón y, o bien liberan su contenido a la circulación portal hipofisaria para que las hormonas ejerzan su función en la hipófisis anterior (hormonas liberadoras e inhibidoras hipotalámicas), o bien alcanzan la circulación sistémica a través de la neurohipófisis, como ocurre en el caso de la hormona antidiurética (ADH- AVP) y de la oxitocina. 2.4. Hormonas hipotalámicas y de la neurohipófisis 2.4.1. TRH La hormona liberadora de tirotropina tiene la estructura química más sencilla de todas las neurohormonas hipotalámicas. Consta de tres aminoácidos, ácido glutámico, histidina y prolina. Sin embargo, tiene un gran rango de funciones entre las que destacan la estimulación de la secreción de TSH y prolactina, su actuación como neurotransmisor/neuromodulador en el cerebro y médula espinal, su intervención en el control de la temperatura corporal y sus efectos diversos sobre el comportamiento. La liberación de TRH está regulada por centros superiores del encéfalo además de por retroalimentación negativa a través del eje hipotálamo- hipófisis-tiroides.
  • 2. 2.4.2. GnRH La hormona liberadora de gonadotropinas es un péptido de 10 aminoácidos que estimula la síntesis y liberación de las dos gonadotropinas hipofisarias, la hormona estimuladora del folículo (FSH) y la hormona luteinizante (LH). Una de sus características más llamativas es el fenómeno de la secreción pulsátil, o en forma de brotes, a intervalos de tiempo que varían entre especies. En la GnRH este tipo de secreción es más evidente que en otras hormonas hipotalámicas, hasta el punto de que la administración contínua de esta hormona suprime la liberación de gonadotropinas. La estrecha vinculación de esta hormona con la función reproductora implica que su regulación sea relativamente compleja y no se adapte al clásico esquema de retroalimentación negativa. De hecho, la liberación de GnRH está relacionada con los niveles de estrógenos/progesterona durante el ciclo estral y se estudiará en el tema correspondiente a las hormonas de la reproducción. 2.4.3. GHRH La hormona liberadora de la somatotropina o de la hormona del crecimiento presenta un gran número de formas que difieren entre sí en el número de aminoácidos que las componen, variando de 37 a 44. Su función, como su nombre indica, consiste en estimular la síntesis y liberación de la hormona del crecimiento (GH) y en su regulación por retroalimentación negativa intervienen las somatomedinas, hormonas que producen los tejidos expuestos a la GH. Además, el estrés, incluyendo el ejercicio físico, estimula su secreción, y la somatostatina la inhibe. 2.4.4. GHIH La somatostatina no es en realidad una única hormona sino que el término incluye a una gran variedad de polipéptidos formados por cadenas de 14 a 28 aminoácidos. Entre sus funciones se incluye la inhibición de la liberación de GH, y de ahí las siglas GHIH. Es también inhibidora de la secreción de la hormona estimulante del tiroides (TSH). Está ampliamente distribuida por el sistema nervioso central y por otros tejidos, siendo muy importantes sus efectos inhibidores sobre la secreción de insulina y glucagón en el páncreas y sobre algunas funciones gastrointestinales como la secreción ácida en el estómago, la secreción de enzimas pancreáticos o la absorción intestinal. 2.4.5. CRH La hormona liberadora de corticotropina es un péptido de 41 aminoácidos cuya principal función consiste en estimular la síntesis y secreción de ACTH en la hipófisis. La CRH está implicada en la respuesta del organismo a todas las formas de estrés y por lo tanto existen muchos factores relacionados con su regulación. Entre éstos destaca el cortisol, el principal glucocorticoide liberado por la corteza adrenal, que inhibe la liberación de CRH por retroalimentación, mientras que la hormona antidiurética (ADH) ejerce un efecto estimulador. 2.4.6. PIH/PRF El efecto del hipotálamo sobre la liberación de prolactina en la hipófisis es fundamentalmente inhibidor, y lo ejerce a través de la liberación de la hormona inhibidora de prolactina (PIH) que es el neurotransmisor aminérgico conocido como dopamina. Existe mucha controversia en cuanto a la existencia del factor liberador de prolactina (PRF) como una hormona con entidad propia, pero sí está claro que existen sustancias, entre ellas la TRH, que estimulan la liberación de PRL. 2.4.7. ADH/AVP La hormona antidiurética (ADH) o arginina-vasopresina es un péptido sintetizado en las regiones supraóptica y paraventricular del hipotálamo. Una vez formada, la ADH llega a la neurohipófisis a través del tracto nervioso supraóptico transportada por la neurofisina II (un polipéptido hipotalámico) y se libera al torrente sanguíneo, separándose de su transportador. Su estructura varía entre las diferentes especies como refleja la figura 2-1. La función principal de la ADH está relacionada con la regulación del equilibrio hídrico del organismo así como de la osmolalidad. Por ello, cuando se detectan bajadas en la presión sanguínea, disminución de la volemia, hipoglucemia, etc. se activa un osmorreceptor en el hipotálamo que provoca la liberación de ADH. Por el contrario, cuando en el seno carotídeo o en la aurícula izquierda las estructuras especializadas correspondientes detectan una distensión por el aumento del volumen sanguíneo, las neuronas receptoras llevan impulsos al hipotálamo y se inhibe la liberación de ADH en la neurohipófisis. Otra importante
  • 3. función de la ADH se relaciona con su actividad vasoconstrictora, que se produce cuando la hormona se une a los receptores V1 del músculo liso de los vasos y a los V2 de las membranas plasmáticas de las células de los túbulos colectores renales. El mecanismo de acción de la ADH en este caso está mediado por el AMPc y se esquematiza en la figura 2-2. Figura 2-1. Estructura química de la ADH en diferentes especies y de la oxitocina. Figura 2-2. Mecanismo de acción de la ADH en los túbulos renales. 2.4.8. Oxitocina Las funciones de la oxitocina se ejercen fundamentalmente a nivel del útero y de la glándula mamaria. En el útero, la oxitocina se libera como consecuencia de los estímulos recogidos por los mecanorreceptores de este órgano y de la vagina y cérvix, estimulando las contracciones del miometrio durante el parto. Este reflejo se denomina reflejo neuroendocrino de Ferguson. El mecanismo de acción de la oxitocina en el útero implica la activación de canales de Ca2+ y la liberación de PGF2α (Fig. 2-3). En la glándula mamaria, la succión de la cría estimula los mecanorreceptores de los pezones que generan un impulso nervioso aferente hasta hipotálamo provocando la liberación de oxitocina. Ésta actúa sobre las células mioepiteliales de los alvéolos contrayéndolas (reflejo neuroendocrino de succión). La adrenalina inhibe la acción de la oxitocina. La proteína transportadora de la oxitocina desde el hipotálamo a la hipófisis es la Neurofisina I. Cys Phe Cys Arg Arginina vasopresina Cys Phe Cys Lys Lisina vasopresina Cys Ile Cys Leu Oxitocina Arginina vasotocinaCys-Tyr-Ile-Gln-Asn-Cys-Pro-Arg-Gly (NH2) Membrana celular H2OH2OH2O ADH R A C ATP AMPc AMP Quinasa inactiva Quinasa activa cAMP Proteína Proteína-P SANGRE LUZTUBULAR
  • 4. Figura 2-3. Funciones de la oxitocina. Ca++ Ca++ Ca++ Ca++ Receptor de oxitocina Oxitocina ATPasa Ca++Mg++ - + PGF 2α + Contracción LUZ C.S. C.S. C.S. C.M. Neurofisina Oxitocina