• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Ped audio lecture-franz-tsc-4-1
 

Ped audio lecture-franz-tsc-4-1

on

  • 1,761 views

Esclerosis tuberosa o Epiloia. Aspectos de su presentación clínica, y de su repercusión en cerebro, riñón y pulmón.

Esclerosis tuberosa o Epiloia. Aspectos de su presentación clínica, y de su repercusión en cerebro, riñón y pulmón.

Statistics

Views

Total Views
1,761
Views on SlideShare
1,435
Embed Views
326

Actions

Likes
1
Downloads
15
Comments
1

3 Embeds 326

http://www.conestetoscopio.com 324
http://www.infodoctor.org 1
http://webcache.googleusercontent.com 1

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel

11 of 1 previous next

  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
  • thx!
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Ped audio lecture-franz-tsc-4-1 Ped audio lecture-franz-tsc-4-1 Presentation Transcript

    • Emerging Treatment Strategies for Tuberous Sclerosis Complex David Neal Franz, MD Director, Tuberous Sclerosis Clinic Cincinnati Children’s Hospital Medical Center Cincinnati, Ohio
    • Goals
      • Describe the manifestations of tuberous sclerosis complex (TSC) in various organ systems and the most frequent causes of neurologic, renal, and pulmonary morbidity and mortality
      • Review the molecular pathophysiology of TSC and how this forms the basis for novel therapeutic approaches
      • Compare the rationale and initial clinical trial evidence for emerging treatment approaches for TSC
      • Summarize ongoing clinical trials evaluating treatment approaches for TSC, including the goals of the trials, patient eligibility criteria, and other key factors
    • Clinical Manifestations of TSC
      • Brain: cortical tubers, subependymal nodules, subependymal giant cell astrocytomas
      • Eye: retinal hamartomas
      • Heart: cardiac rhabdomyomas
      • Kidney: benign angiomyolipomas, cysts, malignant angiomyolipomas, renal cell carcinoma
      • Lung: lymphangioleiomyomatosis, multifocal micronodular pneumocyte hyperplasia
      • Skin: hypomelanotic macules, shagreen patches, periungual or subungual fibromas, facial angiofibromas
      • Behavior: mental retardation, autism, bipolar disorder
      Pan D, et al. Trends Cell Biol. 2004;14:78-85.
    • Clinical Diagnostic Criteria Roach ES, Sparagana SP. J Child Neurol. 2004;19:643-649. Major Features Minor Features Cortical tubers Multiple, randomly distributed pits in dental enamel Subependymal nodules Hamartomatous rectal polyps Subependymal giant cell astrocytoma Bone cysts Hypomelanotic macules (3 or more) Cerebral white matter radial migration lines Shagreen patch (connective tissue nevus) Gingival fibromas Facial angiofibromas or forehead plaque Nonrenal hamartoma Multiple retinal nodular hamartomas Retinal achromic patch Nontraumatic ungual or periungual fibromas “ Confetti” skin lesions Cardiac rhabdomyoma, single or multiple Multiple renal cysts Pulmonary lymphangioleiomyomatosis and/or renal angiomyolipomas
    • TSC: Onset of Symptoms
    • Hypopigmented Macule and Shagreen Patch
    • Facial Angiofibroma
    • Periungual Fibroma
    • Dental Pits and Gingival Fibromas
    • Retinal Hamartomas and Achromic Patches
    • Cardiac Rhabdomyoma
    • Lymphangioleiomyomatosis (LAM)
    • Renal Angiomyolipoma and Renal Cysts
    • Angiomyolipoma
    • Cerebral Manifestations of TSC
    • Cortical Tuber
    • Subependymal Nodules
    • Neurologic/Behavioral Manifestations
      • Seizures (90%)
      • Mental retardation and learning difficulties (60%-70%)
      • Sleep disorders (60%)
      • Autism and behavioral difficulties (30%-50%)
      • Subependymal giant cell astrocytoma (15%-20%)
    • Seizures, Infantile Spasms, and Cognitive Outcome
      • Infantile spasms correlated with increased risk for poor neurologic outcome a
      a O’Callaghan FJ, et al. Arch Dis Child. 2004;89:530-533. b Goh S, et al. Neurology . 2005;65:235-238. Clinical Variables Associated With Mental Retardation in Patients With TSC and Infantile Spasms b Variable Odds Ratio 95% CI P Value Time from treatment initiation until clinical cessation 1.07 1.01-1.14 .018 Total duration of infantile spasms from clinical onset to cessation 1.09 1.03-1.15 .004 Poor control of other seizures after cessation of infantile spasms 17.76 3.47-129.1 .00004
    • Infantile Spasms in TSC
      • Vigabatrin is the treatment of choice in TSC
        • Risk for adverse effect on peripheral vision
        • As high as 95% response rate in TSC a
      • Steroids are second-line treatment (adrenocorticotropic hormone or oral prednisone)
      • Valproate, topiramate, clonazepam minimally effective as single agents but may have beneficial adjunctive use
      a Hancock EC, Osborne JP. J Child Neurol . 1999;14:71-74.
    • Epilepsy in TSC
      • About 90% of patients with TSC experience seizures
      • Virtually all seizure types have been reported (simple partial, complex partial, generalized tonic-clonic, absence)
      • Aggressive treatment is necessary to reduce risk for negative neurologic outcome (development, cognition, behavior)
    • Surgical Outcome of Epilepsy Surgery in TSC
      • Outcome (Engel’s classification):
        • Class I (seizure free): 37/69
        • Class II (some seizures): 8/69
        • Class III (> 90% reduction): 13/69
        • Class IV (< 90% reduction): 12/69
      Connolly M, et al. Child Nerv Syst. 2006;22:896-908. Madhavan D, et al. Epilepsia. 2007;48:1625-1628.
    • Sleep Problems in TSC
      • Survey of 300 TSC patients (age 0.5-74 years):
        • 58% with sleep problems in general
      • Survey of 40 pediatric TSC patients (age 2-15 yrs):
      Hunt A . J Intellectual Disability Res. 1993;37:41-51. Hunt A , Stores G. Dev Med Child Neurol. 1994;36:108-115. Study Group Sleep Index ± SD TSC children 4.9 ± 3.1 Unaffected siblings 0.6 ± 1.0 Age/gender-matched controls 0.4 ± 0.7 Children with mixed learning disabilities 2.8 ± 2.5
    • Subependymal Giant Cell Astrocytoma (SEGA)
    • Acute Hydrocephalus With SEGA
    • Serial Monitoring for SEGA
    • Traditional Surgical Resection of SEGA
    • Stereotactic Angioplasty Balloon Technique Levine NB, et al. Minim Invasive Neurosurg. 2006;49:317-320.
    • Genetics of TSC 9 16 Autosomal dominant Near 100% penetrance Variable expression No Mutation Identified (10%-15%) TSC1 (15%-20%) TSC2 (60%-70%) PKD1
    • TSC1/TSC2 and mTORC1
    • Rapamycin and Everolimus (RAD001) Rapamycin (sirolimus) RAD001 (everolimus) O O O H O O O N O O O O O H O H O O O O H O O O N O O O O O O H O O H
    • Everolimus and Sirolimus Comparison of Properties a RAD001 Investigators Brochure (6 th ed). b Buech G, et al. J Ocul Pharmacol Ther . 2007;23:292. c Formica RN, et al. Transplant Proc . 2004;36(Suppl 25S):495S-499S. d Brattstrom C, et al. Ther Drug Monit . 2000;22:537-544.5. e Kahan BD, et al. Transplantation . 1991;52:185-191. f Serkova N, et al. Br J Pharmacol . 2001;133:875-885 . *Varies with formulation, dose, and co-medications. Everolimus has greater bioavailability than sirolimus. **Ratio of drug in blood (ng/mL) and brain (ng/g) following 6 days oral dosing at 3 mg/kg in rats. f Characteristic Everolimus Sirolimus Molecular weight (Kd) 958 a 914 b Solubility in water ( μ g/mL) 8-fold higher b 2.6 b Hydrophobicity Less c Extreme b Bioavailability (%) ≥ 11 a* 1.6 e* Blood:plasma (%) 26% free a Brain accumulation** 3.1:1 f 5.7:1 f Tmax (hrs) 1-2 0.8 d T1/2 (hrs) 30 a 86 d Vss (L/kg) 44 -52 a 23 d Clearance (mL/hr•kg) 1200 a (rat) 256 d (man)
    • Rapamycin for Treatment of Angiomyolipoma A B Bissler JJ, et al. N Engl J Med. 2008;358:140-151.
    • Rapamycin Effect on LAM Bissler JJ, McCormack FX, Young LR, et al. N Engl J Med. 2008;358:140-151.
    • Rapamycin for the Treatment of SEGA Franz DN, et al. Ann Neurol. 2006;59:490-498.
    • Everolimus Effect on SEGA in TSC Baseline 6 months RAD001
    • Cerebellar Tuber Growth
    • Cerebellar Tuber Before and After Treatment With Rapamycin
    • RAD001 Effect on SEGA Volume
    • Before Treatment Everolimus x 3 months Angiomyolipoma Before and After Treatment
    • Chylothorax in LAM
    • Current Clinical Trials Related to TSC
      • EXIST-1: Efficacy and Safety of RAD001 in Patients of All Ages With Subependymal Giant Cell Astrocytoma Associated With Tuberous Sclerosis Complex (TSC)
      • EXIST-2: Efficacy and Safety of RAD001 in Patients 18 Years and Over With Angiomyolipoma Associated With Either Tuberous Sclerosis Complex (TSC) or Sporadic Lymphangioleiomyomatosis (LAM)
      • MILES: Efficacy and Safety of Rapamycin in Patients with Tuberous Sclerosis Complex Lymphangioleiomyomatosis (TSC-LAM) or Sporadic Lymphangioleiomyomatosis (S-LAM)
      • Long-term Follow-Up for RAD001 Therapy of Angiomyolipomata in Patients With Tuberous Sclerosis Complex (TSC) and Sporadic Lymphangioleiomyomatosis (LAM)
      • Long-term Follow-Up for RAD001 Therapy of Subependymal Giant Cell Astrocytoma in Patients With Tuberous Sclerosis Complex (TSC)
    • Current Clinical Trials Related to TSC (cont)
      • Efficacy and Safety of Aromatase Inhibition for Tuberous Sclerosis Complex Lymphangioleiomyomatosis (TSC-LAM) or Sporadic Lymphangioleiomyomatosis (S-LAM)
      • Study of Skin Tumors in Tuberous Sclerosis
      • Tuberous Sclerosis Complex Natural History Study: Renal Manifestations
      • Study of the Disease Process of Lymphangioleiomyomatosis
      • Effect of Fasting on the Size of Abdominal Lymphatic Tumors in Women
      • Role of Genetic Factors in the Development of Lung Disease
    • Summary
      • Tuberous sclerosis is a multiorgan disorder with variable penetrance and severity
      • Highest disease morbidity is associated with cerebral, renal, and pulmonary manifestations
      • Molecular-based therapies using mTOR inhibitors are showing promise in treating patients with TSC
    • Thank you for participating in this activity. To proceed to the online CME test, click on the Earn CME Credit link on this page.