Data visualization

8,048
-1

Published on

This slide deck gives a general overview of Data Visualization, with inspiring examples, the strength and weaknesses of the human visual system, a few technical frameworks that may be used for creating your own visualizations and some design concepts from the data visualization field.

Published in: Technology
3 Comments
38 Likes
Statistics
Notes
No Downloads
Views
Total Views
8,048
On Slideshare
0
From Embeds
0
Number of Embeds
6
Actions
Shares
0
Downloads
639
Comments
3
Likes
38
Embeds 0
No embeds

No notes for slide
  • http://www.csc.ncsu.edu/faculty/healey/PP/index.html
  • Data visualization

    1. Data Visualization
    2. Outline • What? • Why? • How?
    3. Outline • What? • Why? • How?
    4. Data Visualization “...to convey information through visual representations.” “...produces (interactive) visual representations of abstract data to reinforce human cognition; thus enabling the viewer to gain knowledge about the internal structure of the data and causal relationships in it.”
    5. Outline • What? • Why? • How?
    6. VISUALIZATION GOALS
    7. Visualization Goals • Answer questions (or discover them) • Make decisions • See data in context • Support graphical calculation • Find patterns • Present argument or tell a story • Inspire
    8. Three Functions of Visualization • Record: store information • Analyze: support reasoning about information • Communicate: convey information to others
    9. PERCEPTION & COGNITION
    10. Anscombe Quartet
    11. Anscombe Quartet
    12. How many 3’s? 24872184012387409216590147609856093247209 12562906509852659048275829856809609863095 84390564095878950374509284750989475092984
    13. How many 3’s? 24872184012387409216590147609856093247209 12562906509852659048275829856809609863095 84390564095878950374509284750989475092984
    14. Preattentive Processing • Requires attention despite the name • Very fast: < 200-250 ms • What matters most is the contrast between features
    15. Color
    16. Shape
    17. Conjunction
    18. Change Blindness
    19. Simultaneous Contrast
    20. Outline • What? • Why? • How?
    21. FRAMEWORKS
    22. ProtoVis
    23. Processing Spde
    24. REDESIGN
    25. INSPIRATION
    26. Credits & Resources • HansPeter Phister for slides inspiration: http://www.cs171.org/ • Stephen Few for Dashboard & redesigns: http://www.perceptualedge.com • Christopher G. Healy for Change Blindness & Preattentive Variables: http://www.csc.ncsu.edu/faculty/healey/PP/ • Hans Rosling from Gapminder: http://www.ted.com/talks/hans_rosling_shows_the_best_stats_you_ve_ever_seen.html http://www.gapminder.org/ • Protovis: http://vis.stanford.edu/protovis/ • Polymaps: http://www.polymaps.org/ • Processing: http://processing.org/ • Processing.js: http://processingjs.org/ • Spde: http://technically.us/spde/About • Tableau Public: http://www.tableausoftware.com/public/ • Oakland Crime Spotting & Cab Spotting by Stamen Design: http://www.stamen.com/ • “Good Morning” & Haiti Earthquake Aid in Avatar Minutes by Jer Thorp: http://blog.blprnt.com/ • House of Cards video clip for Radiohead by Aaron Koblin: http://www.aaronkoblin.com/ • Wikipedia history flow by Martin Wattenberg & Fernanda Viegaz: http://www.bewitched.com/ http://fernandaviegas.com/ • Map of USA by Ben Fry: http://benfry.com/ • “Hoe de kredietcrisis de beurs besmette by Frédérik Ruys: http://www.vizualism.com/ • StemBesef by Jan Willem Tulp: http://www.janwillemtulp.com/stembesef
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.

    ×