!1

Visualizing (BIG) Data

Jameson Toole!
PhD Candidate
Human Mobility and Networks Lab (HuMNet)
MIT
!2

Outline
1.General Principles
2.Tools
3.Geographic Data
4.Networks
5.Inspiration
3

Before we start…
1.There are no rules, only suggestions.
2.Sometimes suggestions are contradictory.
3.Be opinionated.
4...
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Visualizing (BIG) data.
Upcoming SlideShare
Loading in...5
×

Visualizing (BIG) data.

4,319

Published on

A collection of slides on visualizing data (BIG or not). I am still adding slides here and tweaking things so if you have a correction, or opinion, or addition please let me know on Twitter @jamesonthecrow

Published in: Technology, Education

Visualizing (BIG) data.

  1. 1. !1 Visualizing (BIG) Data Jameson Toole! PhD Candidate Human Mobility and Networks Lab (HuMNet) MIT
  2. 2. !2 Outline 1.General Principles 2.Tools 3.Geographic Data 4.Networks 5.Inspiration
  3. 3. 3 Before we start… 1.There are no rules, only suggestions. 2.Sometimes suggestions are contradictory. 3.Be opinionated. 4.Guidelines may vary depending on your intended audience.
  1. A particular slide catching your eye?

    Clipping is a handy way to collect important slides you want to go back to later.

×