• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Mobile social search

Mobile social search



My presentation at Search Computing on a topic that I think is going to be quite popular soon.

My presentation at Search Computing on a topic that I think is going to be quite popular soon.



Total Views
Views on SlideShare
Embed Views



2 Embeds 114

http://mj89sp3sau2k7lj1eg3k40hkeppguj6j-a-sites-opensocial.googleusercontent.com 113
http://translate.googleusercontent.com 1


Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.


Mobile social search Mobile social search Presentation Transcript

  •  9/25/12   1  
  • An  Elephant  and  Six  Blind  Men  
  • An  Elephant  is  NOT  •  Wall  •  Rope  •  Snake  •  Spear  •  Tree  •  Fan  
  • An  Elephant  is  …   an  Elephant  
  • Mobile  Social  Search  (MSS)   is  NOT  Mobile     is  NOT  Social     is  NOT  Search   Is  Mobile  Social  Search  
  • Changing  Times  in  Search  Mobile  Social  Search:    Search  ‘inside’  problem  solving  in  real  ;me.   Problem  Solving       Search    
  • MSS:  A  Problem  of  Riches   When  we  were  (data)  poor  –   we  searched.     Now  that  we  are  (data)  rich  –   we  need  mobile  social   search.    
  • SearchConnecting
  • Then Now
  • Then Now
  • •  What  is  an  Italian  Restaurant?   –  List  Italian  Restaurants  in  Brussels.  •  Show  me  Italian  Restaurants?   –  Use  Yelp  (or  any  other  social  approach)  and  distance   from  me  to  rank  them.  •  Where  should  I  go  to  eat  Italian  food  NOW?   –  Consider  Tme  taken,  current  ambiance,  and  quality   of  food  into  consideraTon.  
  • •  What  are  symptoms  of  Swine  Flu?  •  Is  there  a  major  Swine  Flu  outbreak  in  my  area?  •  You  are  likely  to  be  very  sick  with  extreme  case   of  Swine  Flu  soon,  your  doctor  is  ready  with  the   set  up.  
  • Social  Networks    Connecting People
  • Social  Life  Networks   Connecting Information     People Aggregation Situation Alerts and Detection CompositionAnd Queries Resources9/25/12   14  
  • Concept  recogni;on  from  data   Heterogeneous  Media   Heterogeneous  Media   LocaTon   Scenes   Single  Media   Environm Trajectories   SituaTons   aware   ents   K   3.4   Single  Media   LocaTon   Visual   Real  world   Visual   360  K   11.4K   AcTviTes   unaware   Objects   Objects   Events   StaTc   Dynamic   SPACE   TIME   15  
  • Proprietary  and  ConfidenTal,  Not  For  9/25/12   16   DistribuTon  
  • •  SituaTon:  An  acTonable  abstracTon  of   observed  spaTo-­‐temporal  characterisTcs.  •  Allow  users  to  define  their  own  spaTo-­‐ temporal  features  and  create  the  situaTon   detecTon  filters.    9/25/12   17  
  • Swine  flu:  Situa;on  Segmenta;on   into  ‘high’  and  ‘low  ’ac;vity  zones.   Proprietary  and  ConfidenTal,  Not  For  9/25/12   18   DistribuTon  
  • (a) Pollen levels (Source: Visual) (b) Census data (Source: text file) (c) Reports on ‘Hurricanes’ (source: Twitter stream)  d) Cloud cover (Source: Satellite imagery) (e) Predicted hurricane path (source: KML) (f) Open shelters coverage(Source: KML)   Representa;on  for  different  data  sources  into  a  common   spa;o-­‐temporal  format.    
  • Level  0:  Raw  data  streams    e.g.  tweets,  cameras,  traffic,  weather,  …   …   Level  1:  Unified   representaTon   ProperTes (STT  Data)   STT  Stream   Level  2:   AggregaTon   ProperTes Emage   (Emage)     Level  3:   Symbolic  rep.   ProperTes SituaTon   (SituaTons)  
  • Billions  of  data  sources.    Selec;ng  and  combining  appropriate  sources  to  detect  situa;ons.    Interac;ons  with  different  types  of  Users    Decision  Makers                            Individuals     9/25/12   21  
  • Front  End  GUI New New E-­‐mage Alert Data Query Stream Request Source Back  End  Controller E-­‐mage  Stream Personalized   Registered Stream  Query  Processor Queries Alert  Unit E-­‐mage  Stream User  Info Registered Data Data  Ingestor Raw  Data Storage Sources API  Calls Raw  Spatial   Data  Stream Data  Cloud9/25/12   22  
  • 9/25/12   23  
  • S.  No   Operator   Input   Output  1   Selection  σ   Temporal     Temporal     E-­‐mage  Set   E-­‐mage  Set  2   Arithmetic    &   K*Temporal  E-­‐mage   Temporal  E-­‐mage  Set   Logical⊕   Set  3   Aggregation  α   Temporal  E-­‐mage  set   Temporal  E-­‐mage  Set  4   Grouping  γ   Temporal  E-­‐mage  Set   Temporal  E-­‐mage  Set  5   Characterization  :   • Spatial  φ   • Temporal  E-­‐mage  Set   • Temporal  Pixel  Set   • Temporal  τ   • Temporal  Pixel  Set   • Temporal  Pixel  Set  6   Pattern  Matching  ψ   • Spatial  φ   • Temporal  E-­‐mage  Set   • Temporal  Pixel  Set   • Temporal  τ   • Temporal  Pixel  Set   • Temporal  Pixel  Set   9/25/12   24  
  • Personal  SituaTon   Proprietary  and  ConfidenTal,  Not  For  9/25/12   25   DistribuTon  
  • Macro  situa;on   Alert  Level=High   Date=12/09/10   Micro  event   Situa;onal  controller   Control  Ac;on   e.g.  “Arrgggh,  I     “Please  visit  have  a  sore  throat”   • Goal     nearest  CDC   (Loc=New  York,   • Macro  SituaTon     center  at  4th  St   Date=12/09/10)   • Rules   immediately”   Level  1  personal  threat  +  Level  3  Macro  threat  -­‐>  Immediate  ac;on     9/25/12   26  
  • Planetary   1)  Macro          scale  sensing   situaTon  Social  sensors  Device  sensors  Macro  sensors   2)  Personalized     situaTon     Personal     context     Personal  life  streams         Profile/     Preferences   e.g.  High  Flu  risk   3)  Recommend                     AcTons       Available   resources   Resource  data  
  • Classify (Flood level - Shelter Flood Shelter) Twitter Flood Level Shelter9/25/12   28  
  • Taking  personalized  acTons  9/25/12   29  
  • •  Was  for  Archived  data  and  mostly  for   researchers  (using  Desktop).  •  Currently:  Mobile  clients,  Local  data,  and   Social  Graph  (SoMoLo).  •  Immediate  Future:  SituaTons  from  Real  Time   data  and  RecommendaTons.  •  Future:  PredicTve  control  of  emerging   situaTons.  
  • Thanks  for  your  Tme  and  alenTon.   For  quesTons:  jain@ics.uci.edu  
  • Applica;on  scenarios   ¨  Business  decision  making:  Demand-­‐supply  analysis,   opening  a  new  store,  offer,…   ¨  Medical  :  Epidemic  monitoring,  Asthma,  polluTon   effect  miTgaTon   ¨  Disaster  relief:  (hurricane,  flood,  fire)  direcTng   people  to  appropriate  resources.   ¨  Traffic:  SuggesTng  best  routes      9/25/12   32