• Save
Materiales Didácticos
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

Materiales Didácticos

on

  • 3,070 views

 

Statistics

Views

Total Views
3,070
Views on SlideShare
3,070
Embed Views
0

Actions

Likes
9
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

Materiales Didácticos Presentation Transcript

  • 1. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 2. CLÁSICOS El maestro, el libro, el lápiz, el cuaderno y la pizarra. POPULARES, PERO POCO UTILIZADOS El tangram, calculadora, reglas, medidor de ángulos, geoplano, barras de fracciones, compás, bloques lógicos, bloques multibase, regletas, ábaco, ordenador, reloj, símil-dinero, juegos, geomag, sudokus, dominós, loterías, plastilina, pentominos, mecanos, puzzles … OTROS, MÁS CERCANOS Y ACCESIBLES Papel usado, envases reciclados, cuerdas, dados, barajas, palillos, folletos de tiendas, menús de restaurantes, almanaques, agendas telefónicas, abanicos, planos, etiquetas, horarios de guaguas… No se trata de sustituir unos materiales por otros, ni de si son mejores o peores, sino de aprovechar materiales baratos y abundantes en nuestro entorno. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 3. ¿Cuándo? Siempre que se introduzca una nueva competencia matemática, el proceso óptimo de enseñanza aprendizaje debería incluir la manipulación con distintos materiales, ya que sólo a partir de una enseñanza diversificada, rica en recursos y estrategias para abordar un mismo aprendizaje, conseguiremos que se interioricen los aprendizajes matemáticos de forma significativa. Después de este trabajo manipulativo se puede pasar a usar progresivamente recursos más elaborados de representación matemática y el trabajo escrito con lápiz y papel. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 4. ¿Por qué? El uso de materiales didácticos y juegos adecuados permiten: - Mejorar la actitud de los alumnos ante las matemáticas. - Desarrollar la creatividad, acostumbrarlos a enfrentarse a problemas que no tienen una solución determinada de antemano. - Desarrollar estrategias para resolver problemas - Hacer unas matemáticas que se adapten a las posibilidades individuales de cada alumno. Los materiales permiten a profesores y alumnos “conversar” sobre algo concreto. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 5. Papel usadoPapel usado NUMERACIÓNNUMERACIÓN Damos la vuelta al folio usado, y rodeamos todas las cantidades numéricas que encuentre, podemos buscar cardinales y ordinales, compararlas, ordenarlas de menor a mayor, buscar las cantidades repetidas, buscar si hay alguna escrita con letra, etc. Repartir un folio reciclado a cada alumno. En él, escriben el dígito que quieran. Se les da una consigna del tipo “formen números del 100 al 200, formen números pares de 3000 a 4000, etc.” Los alumnos se agrupan libremente hasta formar la cantidad solicitada. Un mismo grupo puede ofrecer varias soluciones válidas. Con el mismo folio del ejemplo anterior, se agrupan primero (cuatro o cinco por grupo) y se les da la orden de “gana quien más se acerque a 4862”. Deberán colocar sus cifras para conseguir acercarse lo más posible. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 6. DadosDados LA APUESTALA APUESTA Pueden participar 2, 3, 4, o 5 jugadores, cada uno con un dado. Antes de tirar, cada uno dice la cantidad total que estima que va a salir. A continuación se tiran los dados, se suma y se comprueba quién es el que se acercó más. Si es necesario, pueden apuntarse las cantidades. Otra opción es jugar a suma par o impar. El mecanismo del juego no varía. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 7. BarajasBarajas SUMA 10 Juegan dos, tres o cuatro personas. Se trata de ir colocando, por turno, una carta de la baraja hasta que una fila, columna o diagonal sume 10. Entonces, el jugador se queda con esas tres cartas. Gana quien consiga más cartas. Cada vez que se pone una carta, se roba otra del mazo. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 8. CALCULA EL NÚMEROCALCULA EL NÚMERO Se decide un número entre los jugadores. Después se reparten barajas o cartas con números del 1 al 10. Con las operaciones que se quieran hay que aproximarse al número antes decidido. BarajasBarajas Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 9. CANTIDADESCANTIDADES El profesor puede sacar tres cartas al azar y pedir que en voz alta digan la cantidad de dos cifras mayor que se pueda formar, y la menor. Las cantidades de los distintos grupos se ordenan también de menor a mayor. Con las tres mismas cartas elegidas al azar, formar todos los números de dos dígitos posibles y ordenarlos. Se entregan ocho cartas a cada grupo. Con esas cifras y las operaciones que estemos trabajando, hay que construir una igualdad. Antes de la partida se pacta un dígito, por ejemplo el 4. Cada jugador tiene 7 cartas, y trata de hallar, juntando dos o más cartas, un múltiplo de 4. Si no tiene roba del mazo. Gana el que primero se queda sin cartas o el que más múltiplos haya encontrado. Introducción a la medida de superficie tomando como unidad cada cata de la baraja. BarajasBarajas Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 10. PalillosPalillos EL PRISIONERO Imagina que el botón es un prisionero y los palillos son policías. Fíjate que hay cuatro policías por cada lado. Cambiando de posición 4 de ellos, conseguirás que el prisionero esté custodiado por cinco policías en cada lado. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 11. PalillosPalillos QUITANDO PALILLOS Se comienza con dos grupos de 4 palillos. Hay dos jugadores. Cada uno puede quitar un palillo de cada grupo o un palillo solamente. Gana quien al alza el último palillo. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 12. PalillosPalillos TRIÁNGULOS Construye con tres palillos un triángulo. Construye con cinco palillos dos triángulos. Construye con seis palillos cuatro triángulos. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 13. TablerosTableros 1 2 3 4 5 6 7 8 9 JUEGO DEL 15 Juegan dos participantes con tres fichas cada uno. El primero pone su ficha en una casilla y después lo hace su compañero. Así sucesivamente hasta que alguno sume 15 con las tres fichas. Si ninguno lo ha conseguido se pueden ir cambiando las fichas a números que estén vacíos. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 14. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA Regletas Cuisinaire (Números de color)
  • 15. Regletas Cuisinaire (Números de color) • Las regletas de colores son un material manipulativo especialmente idóneo para la adquisición progresiva de competencias numéricas. • Son un soporte a la imaginación de los números y de sus leyes, necesario para poder pasar al cálculo mental. •Las longitudes van desde 1 cm, la más pequeña, hasta 10 cm la mayor, diferenciándose una de su siguiente en 1 cm. Así, la más pequeña (la llamamos regleta unidad) tiene 1 cm de longitud, una superficie de 1 cm2 y un volumen de 1 cm3, y representa el número 1. Sucesivamente las demás regletas representan a los siguientes números hasta el 10, de tal manera que cada una de ellas contiene a la regleta unidad, tantas veces como indica el número que representan. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 16. 10 cm x 1 cm2 10 9 cm x 1 cm2 9 8 cm x 1 cm2 8 7 cm x 1 cm2 7 6 cm x 1 cm2 6 5 cm x 1 cm2 5 4 cm x 1 cm2 4 3 cm x 1 cm2 3 2 cm x 1 cm2 2 1 cm x 1 cm2 1 TamañoNºRegletas (color) Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 17. • Son muy útiles para introducir la enseñanza del número y las operaciones aritméticas. • En un principio se pretende que el niño/a asocie el tamaño al color y se dé cuenta que para el mismo color siempre el mismo tamaño. • Con ellas se ejercitará haciendo series y clasificaciones. • Asimismo se pretende, en un paso posterior, que el niño/a sea capaz de establecer equivalencias entre las regletas y la serie numérica, y descubra la relación de inclusión que existe entre ellas. ¿PARA QUÉ SIRVEN? Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 18. ¿QUÉ PODEMOS HACER CON LAS REGLETAS? • Hacer distintas seriaciones, clasificaciones, ordenaciones, ... • Establecer distintas relaciones entre las regletas: “mayor que”, “menor que”, “igual que”. • Construir la serie numérica del 1 al 10, es decir, descubrir la relación n+1, en la que cualquier número natural se construye sumándole a su anterior la unidad. • Comprobar la relación de inclusión en la serie numérica, es decir, ver que en cada número están incluidos los anteriores. • Establecer correspondencias entre las regletas y otros conjuntos. • Descomponer los números, así como construirlos a partir de otros. • Operar de manera manipulativa (fundamentalmente suma y resta). • Iniciarlos en las operaciones multiplicativas (suma de sumandos iguales; repartos y particiones). Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 19. EJEMPLOS DE ACTIVIDADES PARA NIÑOS Y NIÑAS DE 6-7 AÑOS • Memorizar el valor de cada regleta, ya que lo interesante es que el niño domine las regletas, no por su color, sino por su valor. • Enseñar una regleta determinada y preguntar por el anterior y el posterior. • Comparar dos regletas y ver cuál es la mayor (o la menor). • Mostrar una serie de regletas consecutivas en la que falta una intermedia. Preguntar por el número que falta. • Comprobar la serie numérica n+1. • Representar los números con las regletas y viceversa. • Practicar el hecho de que 10 unidades pueden cambiarse por una decena y viceversa. • Composición y descomposición de cantidades. • Realizar sumas y restas con el modelo físico. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 20. EJEMPLOS DE ACTIVIDADES PARA NIÑOS Y NIÑAS DE 7-8 AÑOS • Representar los números de dos y tres cifras, y viceversa. • Componer y descomponer números. • Representar sumas escritas en vertical “llevado”, insistiendo en la idea que 10 unidades puede cambiarse por una decena. • Representar la multiplicación como suma de sumandos iguales. Prestar atención a la representación geométrica del producto (rectángulo o cuadrado). • Representar las restas. 18 + 15 33 Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 21. EJEMPLOS DE ACTIVIDADES PARA NIÑOS Y NIÑAS DE 8-9 AÑOS • Observar y descubrir propiedades de la multiplicación. • Construir la tabla pitagórica. • Empezar a practicar la división, preguntando cuántas regletas del 3 se necesitan para construir el 12. • Construir y comparar los cuadrados de los 10 primeros números. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 22. EJEMPLOS DE ACTIVIDADES PARA NIÑOS Y NIÑAS DE 9-10 AÑOS • Profundizar en la comparación entre los cuadrados de números. Observar, por ejemplo, si el cuadrado de 4 es el doble del cuadrado de 2. ¿Cuántos cuadrados de 2 se necesitan para construir el cuadrado de 4?... • Hacer productos de tres factores (volumen). • Construir el cubo de un número. • Introducir el significado del paréntesis y la jerarquía de las operaciones: (3+2)x4 frente a 3+2x4. • Representar el algoritmo de la división por una cifra. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 23. EJEMPLOS DE ACTIVIDADES PARA NIÑOS Y NIÑAS DE 11-12 AÑOS • Ampliar la noción de cubo y volumen, a partir del producto de tres números.. • Comparación de números cúbicos. • Hacer investigaciones y descubrimientos numéricos libres. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 24. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 25. Hacemos seriaciones Esta actividad consiste en realizar seriaciones, atendiendo a distintos criterios. En principio, los criterios los pueden establecer los propios niños/as, hasta llegar a que los criterios sean dados por el maestro. Estos criterios irán de menor a mayor dificultad, es decir, pasando de las series de un término, a dos, tres, ... Por ejemplo: Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 26. Ordenamos las regletas según su tamaño • El objetivo de esta actividad es establecer la relación n + 1. Vamos a trabajar las relaciones de orden “mayor que”, “menor que” e “igual que”. • Podemos empezar pidiendo a los niños/as que elijan la regleta más pequeña y la coloquen encima de la mesa, y así sucesivamente, hasta conseguir completar la serie con todas las regletas. • Procedemos de igual manera, pero a la inversa, empezando ahora por la más grande hasta terminar por la más pequeña Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 27. Establecemos equivalencias - 1 Vamos a jugar ahora haciendo trenes con regletas distintas, pero de la misma longitud. El objetivo es que los niños/as descubran que dos o más regletas tienen la misma longitud que otra regleta dada. Y que no hay una única solución. Es una actividad previa a la enseñanza de la composición y descomposición de números. Empezamos pidiéndole al niño/a que elija una regleta cualquiera. A continuación le damos otra, más pequeña, y que la coloque justo debajo de la anterior. Ahora le pedimos al niño/a que busque una regleta que uniéndola sea igual “de larga” que la otra. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 28. Utilizamos las regletas para medir El objetivo de esta actividad es medir con las regletas. El procedimiento a seguir es elegir una regleta cualquiera (por ejemplo la roja) y un objeto de la clase común para todos. Se les pide a los niños/as que hagan un tren igual de largo que el borde del objeto que hemos elegido, con regletas rojas, y lo coloquen pegado a éste. Preguntamos: • ¿Cuántas regletas rojas mide el “objeto”? Ese mismo objeto se puede medir con regletas distintas (cambiamos la unidad de medida). Es un momento importante para hacerles ver a los niños/as la equivalencia de las dos medidas, convirtiendo cada una de ellas en regletas unidad, y comprobando que los resultados son idénticos. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 29. Establecemos correspondencias El objetivo de este tipo de actividad es establecer una correspondencia entre las longitudes de las regletas con conjuntos con elementos de 1 a 10. El recurso más utilizado es presentarles a los niños juegos de 10 cartas, en las que hemos dibujado cualquier objeto (desde 1 a 10). Por ejemplo: Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 30. 6 9 9 Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 31. ¿Quién tiene el tren más largo? - 1 Objetivo: Consolidar la correspondencia entre el número y el color. Es un juego para cuatro jugadores. Necesitamos una caja con regletas y un dado. Uno de los cuatro jugadores hará de “guarda del tren” (es el que custodia la caja de las regletas). Cada juego constará de cinco tiradas. El fin del juego es formar un tren lo más largo posible. El primer jugador tira el dado y saca, por ejemplo, un cuatro. El “guarda del tren” le da una regleta rosa (vagón) que equivale al número que ha sacado. Así sucesivamente hasta completar las cinco tiradas por jugador. El ganador será aquel que ha logrado formar el tren más largo. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 32. Una variante de esta actividad (el momento de trabajarla sería después de haber introducido la suma con regletas) consiste en utilizar dos dados. Los niños/as tiran los dos dados y el que hace de “guarda del tren” les entrega el valor en regletas de la puntuación que han sacado, bien en una, dos o las regletas que estime conveniente. Es necesario que en este tipo de juegos haya un vigilante, con la función de asegurar que no hay equivocación a la hora de entregarle las regletas al jugador/a. Estamos trabajando, además de la suma, la descomposición y composición de números en dos o más sumandos. El ganador será el que forme el tren más largo. Asimismo, se puede hallar la longitud de cada tren, haciendo que los niños/as hallen la equivalencia en regletas unidad de cada uno de ellos y expresándola con un número. Por ejemplo: si al tirar los dados obtengo las puntuaciones de 5 y 3, el “guarda del tren” podrá entregarle al jugador/a las siguientes regletas: una amarilla y una verde; dos rosas; una roja y una verde oscura; una negra y una blanca (unidad); una marrón; dos rojas y una rosa; ... ¿Quién tiene el tren más largo? - 2 Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 33. Sumamos con regletas Pedimos a los niños/as que elijan dos regletas iguales y las coloquen una a continuación de la otra en el centro de su mesa. Les preguntamos que, si las dos son iguales, podemos utilizar un símbolo para decirlo. Para ello utilizamos el signo igual: = Pedimos que busquen, entre sus regletas, dos de ellas con las que puedan formar un tren igual de “largo” que una regleta amarilla, y que las cambien por una de ellas: 5 41 = = = 523 + = + Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 34. Restamos con regletas Iniciamos la actividad pidiendo a los niños/as que elijan dos regletas distintas y las coloquen en el centro de su mesa. Por ejemplo, han elegido la regleta azul (número 9) y la regleta amarilla (el número 5). Tenemos la siguiente situación: Preguntamos: ¿Cuál es la más larga? ¿Y la más corta? A continuación les pedimos que ponga debajo de la regleta más larga (minuendo) y pegada a ella la regleta más corta (sustraendo), y que asocien a cada regleta el número correspondiente: 5 9 Y que busquen una regleta, que unida a la amarilla, obtengan dos trenes iguales de largos. 5 9 4 Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 35. El doble Pedimos a los niños/as que elijan una regleta cualquiera entre las que tienen un valor comprendido entre el 1 y el 5 y la pongan encima de su mesa. A continuación, pedimos que elijan otra igual y la coloquen a continuación de la primera. Por último preguntamos si es posible elegir otra regleta de tal manera que sea igual de larga que las dos juntas que tengo encima de la mesa. 4 4+ = 8 Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 36. La mitad Pedimos a los niños/as que elijan una regleta que tengan los valores 2, 4, 6, 8, ó 10; y la pongan encima de la mesa. A continuación, pedimos que cojan regletas unidad, de tal forma ,que construyan un tren con ellas igual de largo que la regleta que tengo encima de la mesa, y lo coloquen justo debajo de ella. 6 3 33 6+ =3 Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 37. Multiplicamos con las regletas Pedimos a los niños/as que elijan varias regletas (dos, tres, cuatro, ...) del mismo color (primero el rojo). A continuación les decimos que formen un tren con las regletas que han elegido. Y que busquen una regleta que sea igual de larga que el tren que tienen encima de la mesa. 22 2 2 8 • Representa multiplicaciones que tengan forma de cuadrado. • Piensa qué regletas he de añadir a un cuadrado para conseguir el siguiente. Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 38. Dividimos con las regletas - 1 Elegimos una regleta cualquiera y la colocamos encima de la mesa (hemos de evitar que elijan las regletas roja, verde, amarilla y negra. Si las eligen no tendremos más remedio que partirlas en regletas unidad). Les pedimos a continuación que elijan varias regletas iguales, de tal manera que formemos, con esas regletas, un tren igual de largo que la regleta que tengo encima de la mesa. Preguntamos: • ¿Cuántas regletas rojas caben en una regleta naranja? Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 39. Dividimos con las regletas - 2 Podemos introducir la división entera (por exceso o por defecto) de la misma manera, únicamente tenemos que tener en cuenta que el trozo de regleta (dividendo) que me falte por completar, o me sobre, lo haré con regletas unidad (resto). Por ejemplo, si elijo como regleta base (dividendo) la de color azul, y elijo como regleta unidad (divisor) la roja, nos encontraremos con las dos situaciones: dividendo divisor dividendo divisor resto resto Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA
  • 40. Descubrimos los divisores Esta actividad se muestra como una pequeña investigación (predecimos y comprobamos), en la que nos vamos a ayudarnos de las regletas, para hallar los divisores de un número. Podemos pedir a los niños/as que elijan una pieza, por ejemplo la marrón (cuyo valor numérico es 8). A continuación les decimos que busquen una regleta determinada, de tal manera que, con varias de esas regletas, puedan hacer un tren igual de largo que la regleta marrón. Eligen, después de algunos intentos, las rojas, otros la rosa, pocos la blanca y ninguno la marrón. Podemos tener pues la siguiente situación (u otra similar): 8 1 2 4 Bertha Jacqueline Lozada Logroño "UCE" PARVULARIA