Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0

  • 3,773 views
Uploaded on

A non scientific report on emerging renewable energy prospects, focusing on nuclear fusion and the benefits it has as an energy source. Contains relevent statistics and interviews with industry …

A non scientific report on emerging renewable energy prospects, focusing on nuclear fusion and the benefits it has as an energy source. Contains relevent statistics and interviews with industry experts, including some explanations behind the science of fusion.

More in: Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
  • Hi Jack,
    thanks for posting this comprehensive summary on SlideShare. In particular, I like the section on designing an effective communications strategy. I will raise this with the volunteers on the FocusFusion.org crowd funding campaign. We're trying to break the 'decades away' mantra by demonstrating break even with a beryllium electrode in the next 12-18 months.
    Are you sure you want to
    Your message goes here
No Downloads

Views

Total Views
3,773
On Slideshare
0
From Embeds
0
Number of Embeds
1

Actions

Shares
Downloads
97
Comments
1
Likes
1

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   .∞§ §∞. Part 1: Why Fusion? Humanity’s Growing Resource Problem Part 2: Fusion – A Primer Part 3: Fusion Energy Cycles Part 4: Fusion Confinement Devices Part 5: Public Awareness Of Fusion Part 6: Conclusion Part 7: Appendixes “But if you wanted to know what the perfect energy source is? The perfect energy source is one that doesn't take up much space, has a virtually inexhaustible supply, is safe, doesn't put any carbon into the atmosphere, doesn't leave any long lived radioactive waste, it's fusion. But there is a catch. Of course there is always a catch in these cases. Fusion is very hard to do. We've been trying for 50 years. .. And we have 30 million years worth of fusion fuel in sea water..” – Prof. Steven Cowley – Director of the United Kingdom Atomic Energy Authority's Culham Laboratory - Source: TED Talks http://www.ted.com/talks/steven_cowley_fusion_is_energy_s_future.html   Introduction:       This   project   is   intended   as   a   primer   on   nuclear   fusion   and   is   written   in   mostly   non-­‐ technical   language   for   the   non   scientific   reader.   It   is   a   research   project   on   the   applications  of      nuclear  fusion  as  a  power  source.    This  is  a  large  area  of  science,  but  I   have   done   my   best   to   condense   the   large   amount   of   available   information   into   an   easily  understandable  format.      As  a  research  document  this  work  is  compiled  from  a  variety  of  sources,  adding  my   own  commentary  in  the  context  of  this  work.  Though  much  of  this  is  my  own  work,  I   make  no  assumptions  or  claims  to  any  of  it  –  I  have  credited  the  authors  whenever  I   have  used  information  they  have  provided     I  will  not  discuss  the  application  of  fusion  in  weaponry.  The  world  has  seen  the  effects   of  this  already  and  there  is  ample  information  on  it.     This  document  is  not  intended  to  discuss  the  entire  field  in  great  detail,  which  is   far   beyond   the   scope   of   a   short   document   like   this.   It   is   instead   a   carefully   arranged,   ordered   primer   and   a   signpost.     Ample   links   provide   further   roads   for   the   intrigued   reader   to   explore   fusion   on   his   own   terms.   There   is   far   more   coherent   information   than  I  could  reasonably  express,  or  fit  in  to  the  document.     On  another  note,  I  am  not  a  fusion  scientist,  simply  a  very  interested  undergraduate.    I   have  done  my  best,  but  have  probably  made  mistakes,  I  acknowledge  this.     I  hope  that  you  find  this  information  both  useful  and  informative.  The  energy  shortfall   and   pollution   problems   are   huge   hurdles   to   human   progress.   The   realisation   of   commercially  viable  fusion  presents  a  very  real  solution.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 2. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Why  fusion?  Humanity’s  worsening   resource  problem   In grossly simple terms, there are two problems quickly becoming apparent that effect modern civilization. These problems are: 1) Increasing energy costs due to limited availability of fuels with finite deposits. 2) Increasing pollution due to increased economic development and global energy usage Both problems clearly derive from the our reliance upon, and the burning of fossil fuels, which are finite, cause atmospheric pollution and in some areas are unable to be obtained in quantities fully able to satisfy demand. In 2007, the world consumed an estimated 531 exajoules of energy [one exajoule, [denoted as EJ], is 10 exponential 18 joules]. This is equivalent to the energy released by detonating about 9.73 million A-bombs. Sources: EIA:  www.eia.doe.gov/   BP:  www.bp.com/         World  Energy  Shortfall  Predictions  –     Note:  prediction  around  2050  of  a  beginning  of  a  shortfall.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 3. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Even  an  ‘acceptable’  release  of  C02  is  double  the  amount  the  world  faced  before  fossil   fuels  became  widely  used  in  industry!     Modern  man  consumes  around  35  times  the  amount  of  yearly  energy  of  primitive,  pre-­‐ agricultural  man.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 4. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     World  Energy  Consumption  2006  by  Fuel  Type  [Sources:  BP,  EIA]   Note:  In  2006  around  86%  of  our  energy  came  from  fossil  sources.     Evolution  of  World  Total  Fuel  Consumption  by  type   Note:  energy  usage  roughly  doubles  between  1972  and  2005.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 5. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     World  Energy  Use  and  Reserves  circa  2001  –  Source:  WEA   Note:  in  2001  renewables  comprised  less  than  14%  of  our  energy  supply.       UN  Predicted  world  growth  1950-­‐2050.  Note  that  the  scale  is  logarithmic  and   the  population  value  is  given  in  millions!  -­‐  Source  data  calculated  from:   http://esa.un.org/unpp/     According  to  the  U.S.  Energy  Information  Administration  (EIA),  the  demand  for   global  energy  is  projected  to  grow  44%  between  2005  and  2030.  This  will  be   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 6. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   caused  by  a  number  of  factors,  such  as  continuing  economic  growth  and   increasing  populations  in  developing  countries.       -­‐  Source:  http://www.eia.doe.gov/oiaf/ieo/highlights.html     This  same  report  also  stated  that  China  is  the  largest  consumer  of  the  world’s   coal  supply,  and  since  2000  it’s  coal  usage  has  doubled.  Given  the  country’s   expanding  economy,  and  large  coal  reserves,  China’s  demand  for  coal  is   expected  to  remain  strong.  In  the  reference  case,  world  coal  usage  grows  by  2%   every  year,  between  2005  and  2030,  with  coal’s  share  of  the  world’s  total  needs   reaching  29%  by  2030.    Two  of  the  main  consumers  of  energy  will  be  China  and   India,  as  they  are  both  developing  very  quickly  and  have  very  large   populations.  In  1990  both  the  countries  where  consuming  on  average,  10%  of   the  world’s  total  energy  expenditure,  but  in  2006  their  combined  share  had   grown  to  19%.  It  is  expected  that  with  continued  strong  economic  growth,   both  countries  will  increase  their  energy  consumption  twofold,  making  up   28%  of  total  world  consumption  by  2030.      Fission  reactors  have  been  suggested  as  an  alternative  to  this  problem.  But   nuclear  fission  power  has  its  own  problems.  Licensing  and  building  reactors   take  a  very  long  time.  If  the  fuel  were  used  directly  (non-­‐breeder  reactors),  the   finite  Uranium  sources  would  limit  the  available  operation  in  a  relative  short   time  (several  decades).  Going  to  breeder  reactors  can  greatly  extend  this  time,   breeder  reactors  can  utilize  more  abundant  Thorium  in  fission,  and  consume   Uranium  at  a  slower  rate.  However,  these  reactors  produce  Plutonium,  which  is   very,  very  dangerous.  Concerns  about  the  safety  of  nuclear  fission  reactors   include  the  possibility  of  radiation-­‐releasing  nuclear  accidents,  the  problems  of   radioactive  waste  disposal,  and  the  possibility  of  contributing  to  nuclear   weapon  proliferation.  Spent  fuel  elements  contain  plutonium-­‐239.  This   plutonium  could  be  separated  chemically  and  diverted  to  nuclear  weapons   production.           Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 7. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Remaining  oil  reserves  by  source.   Over  38%  is  unrecoverable.       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 8. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Chernobyl  Nuclear  Power  Plant,  reactor  4–  site  of  the  April  1986  disaster  and   along  with  Three  Mile  Island  in  the  USA,  a  significant  reason  why  nuclear   fission’s  reputation  amongst  the  lay  public  (at  least  in  the  USA)  retains  a   negative  stain.  (Yim  2003)         Decay  timeline  of  fission  biproducts.     Note:  the  immense  amounts  of  time  taken  for  radioactivity  to  decay  to  0.         Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 9. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Diagram  comparing  radiotoxocity  of  materials  in  various  fission  and  fusion  reactors.     Note  two  points.     1.    The  extremely  steep  decline  in  fusion  radiotoxicity  relative  to  fission  radiotoxicity.   Fusion  reactors  have  much  shorter  radioactive  half  lives    than  fission  reactors   2.    A  fusion  reactor  with  a  vanadium  alloy  is  no  more  radioactive  than  coal  plant  ashes   after  around  50  years.   Renewables   Renewable  energy  sources  are  an  excellent  alternative  to  finite  and  polluting  fuels,   being  sustainable  and  a  lot  more  environmentally  friendly.  However  on  average  they   do  not  provide  energy  as  cheaply  as  fission  or  other  finite  resources.  Furthermore,  they   are  not  always  suitable  in  many  locations.  For  example,  geothermal  plants  can  only  be   sighted  in  areas  where  geological  conditions  allow  for  subterranean  heat  to  be   accessed.  Solar  panels  are  not  as  effective  in  countries  which  receive  on  average,  less   sunlight,  and  wind  farms,  obviously  require  a  significant  amount  of  wind.     It  should  be  emphasized  that  all  alternative  methods  of  generation  of  electricity  on   Earth,  wind  energy,  wave  energy  from  the  sea,  solar  radiation  converted  by  solar  cells,   etc,  are  all  indirectly  derived  from  the  energy  emitted  by  the  Sun,  i.e.  they  originate   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 10. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   from  solar  fusion.  Even  the  atmosphere,  the  rivers  and  the  forests  providing  other   energy  alternatives  for  electric  power  are  driven  by  heat  and  light  from  solar  fusion.     Great  efforts  will  be  needed  to  achieve  the  sustainable  energy  surplus  we  require  in   the  time  we  have  available,  before  other  options  begin  to  run  down.       -­‐Source:  Met  Office  Hadley  –  Datasets  |   http://hadobs.metoffice.com/hadcrut3/diagnostics/global/nh+sh/     Environmentally  speaking,  I  believe  it  would  be  prudent  to  hedge  our  bets  in  regards   to  climate  change,  as  the  many  of  the  predictions  brought  about  by  climate  change   could  be  disastrous  if  they  turn  out  to  be  accurate.    One  must  remember  that  a   reduction  in  atmospheric  CO2  levels  would  take  many  years  even  if  emissions  were   drastically  reduced  today.  Economically  speaking;  we  require  the  economic   infrastructure  in  place  to  make  up  the  shortfall  that  a  combination  of  increased   consumption  and  declining  fossil  stocks  will  present  in  the  coming  decades.       Energy  is  undoubtedly  the  food  of  civilization.  With  enough  cheap  and  clean  energy,   we  can  produce  unlimited  clean  drinking  water  from  desalinating  the  oceans,  grow   almost  unlimited  food  in  the  desert,  and  reverse  environmental  damage  through   terraforming.  We  can  easily  power  the  technological,  electronic  systems  that  are  so   essential  in  both  our  personal  lives,  and  to  society  as  a  whole.  With  planning  we  can   live  in  a  world  where  our  needs  are  met,  and  not  at  the  expense  of  the  environment.   The  path  to  an  infinitely  abundant  energy  source?  Nuclear  Fusion.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 11. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Fusion  –  a  primer  on  possibly  the  world’s   most  useful  energy  source   It  may  almost  seem  too  good  to  be  true,  but  fusion  has  a  number  of  properties  that,   technological  challenges  aside,  make  it  the  most  promising  energy  source  yet.     Plasma  being  channelled  in  a  fusion  torus   Fusion  –  The  Benefits     SAFE   • If  there  is  an  accident  and  the  magnetic  containment  is  breached,  the  reaction   immediately  stops!  The  metallic  walls  of  the  vessel  surrounding  the  plasma  would   cool  the  expanding  plasma  in  a  short  period,  collapsing  the  reaction  cleanly  and   quickly.     • A  fusion  reactor  is  like  a  gas  burner  –  the  fuel  which  is  injected  into  the  system  is   burnt  off.  There  is  very  little  fuel  in  the  reaction  chamber  at  any  given  moment  (about   1g  in  a  volume  of  1000  m3)  and  if  the  fuel  supply  is  interrupted,  the  reactions  only   continue  for  a  few  seconds.  Any  malfunction  of  the  device  would  cause  the  reactor  to   cool  and  the  reactions  would  stop.       • These  instabilities  in  the  plasma  act  as  an  inherent  safety  mechanism.  A  fusion  reactor   cannot  melt  down  like  a  conventional  nuclear  reactor,  it  simply  degrades  to  gas     • Though  fusion  is  the  main  energy  source  of  hydrogen  bombs,  fusion  alone  has  never   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 12. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   produced  a  bomb;  the  hydrogen  bomb  requires  a  fission-­‐  based  atomic  bomb  to  set  it   off.    This  uncontrolled  fusion  reaction  used  in  a  bomb  is  a  completely  different   mechanism  to  the  controlled  fusion  which  is  utilized  in  peaceful  fusion.     • Day-­‐to-­‐day-­‐operation  of  a  fusion  power  station  would  not  require  the  transport  of   radio-­‐active  materials       •    There  are  no  byproducts  that  could  be  adapted  for  military  purposes.       CLEAN  AND  ABUNDANT   • No  carbon  emissions  are  generated  by  fusion.     • The  raw  fuels  are  abundant  and  equally  distributed  around  the  globe.  This  prevents   geopolitical  and  economic  issues  such  as  countries  gaining  political  advantages  from   the  scarcity  of  the  resource     •  It  also  prevents  economic  inequalities.  Fusion’s  raw  materials  are  available  to  all.     • Raw  materials  for  hydrogen  will  last  for  millions  of  years.  They  are  a  type  (isotope)  of   hydrogen  –  deuterium  (found  in  seawater)  –  and  lithium  (a  light  metal  which  is  found   in  the  Earth’s  crust  and  in  seawater).  The  lithium  in  the  fusion  reactor  wall  produces   tritium  (another  isotope  of  hydrogen)     • The  waste  product  from  a  deuterium-­‐tritium  fusion  reactor  is  ordinary  (and  harmless)   helium.    There  are  no  complicated  nuclear  byproducts  and  therefore  no  nuclear   reprocessing,  or  complicated  fuel  cycling  is  required.     • Although  radioactive  materials  will  be  generated  in  the  walls  of  a  fusion  power  plant   they  would  decay  with  half-­‐lives  of  about  10  years  and  the  whole  plant  could  be  re-­‐ cycled  within  100  years.  There  is  no  long-­‐lasting  radioactive  waste  to  burden  future   generations.   EFFICIENT   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 13. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     The  oceans  offer  us  an  effectively  limitless  source  of  Deutirium.   • Fusion  is  a  very  efficient  form  of  energy  production.  1  kg  of  deuterium  and  tritium   would  supply  the  same  amount  of  energy  as  10  million  kg  of  coal.       • The  fuel  consumption  of  a  fusion  power  station  will  be  extremely  low.  A  1  GW  fusion   plant  will  need  about  100  kg  of  deuterium  and  3  tons  of  natural  lithium  to  operate  for   a  whole  year,  generating  about  7  billion  kWh.     • The  lithium  in  one  laptop  battery  plus  the  deuterium  from  half  a  bathtub  of  water   would  provide  the  UK’s  per  capita  electricity  production  for  30  years.   Source  -­‐    Culham  Centre  For  Fusion  Energy-­‐  fusion.org.uk/fusion_energy.pdf     Fusion  –  The  Drawbacks   Though  I  argue  that  fusion  is  extremely  promising,  it  would  not  be  balanced  for  me  to   leave  out  the  shortcomings  of  nuclear  fusion.   As  an  energy  source,  fusion  has  very  few  fundamental  shortcomings.  The  main   problem  with  fusion  today  is  that,  technologically  it  is  still  beyond  our  grasp.  Though   great  advancements  have  been  made,  most  expert  sources  believe  that  commercially   viable  fusion  is  many  decades  away.  And  at  the  current  rate  of  funding,  this  will   remain  to  be  a  problem…     PROBLEM:  Escalating  research  costs     Many  countries  perceive  fusion  funding  as  a  research  risk.  Essentially  it  is   seen  to  have  a  huge  possible  payoff  in  the  far  future,  and  the  timescales   involved  are  too  long.  The  energy  problem  is  pressing  and  we  need   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 14. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   results  now!  Other  renewable  energy  sources  compete  with  fusion  for   finite  R&D  funding.  Sadly,  many  green  energy  advocates  have  yet  to  catch   on.  Many  commentators,  particularly  those  greens  who  have  fought  long   campaigns  against  nuclear  fission,  are  deeply  suspicious  of  fusion.  They   doubt  fusion  will  deliver  and  believe  the  money  earmarked  for  research   would  be  better  spent  on  renewables,  such  as  wind,  wave  and  solar   energy.  Many  of  these  other  resources  are  already  in  commercial  use,   which  makes  them  perceived  as  a  more  credible  source  of  funding.           “The  ITER  fusion  reactor  was  originally  costed  at  €10bn  (£9bn),  but  the  rising  price  of   raw  materials  and  changes  to  the  initial  design  are  likely  to  see  that  bill  soar,  officials   confirmed  today.   The  warning  came  as  scientists  gathered  in  Finland  to  unveil  the  first  component  of  the   reactor,  which  will  effectively  act  as  its  exhaust  pipe.  The  reactor  is  expected  to  take   nearly  10  years  to  build  and  is  scheduled  to  be  switched  on  in  2018.   It  began  as  a  US-­‐Russian  project  in  the  1980s,  but  has  since  grown  to  include  the  EU,   China,  India,  Japan  and  South  Korea.”  (Sample  2009)  –  Ian  Sample,  The  Guardian   SOURCE  -­‐  http://www.guardian.co.uk/science/2009/jan/29/nuclear-­‐fusion-­‐power-­‐ iter-­‐funding   SOLUTION:  CONSIDER  THE  ALERNATIVES!     There  is  no  ‘real’  solution  to  this.  However,  there  is  an  alternative  way  to  consider  the   issue.   1.  Fusion  may  be  expensive  but,  how  expensive  would  it  be  to  transfer  most  of   humanity  away  from  low-­‐laying  coastal  areas,  assuming  that  global  warming  raises   sea  levels  over  the  next  100  years?   2.  Fusion  should  be  considered  an  investment.  Simple  economics  suggests  that  the   growing  scarcity  of  fossil  fuels  will  result  in  rising  prices  to  provide  power  from  these   sources  over  time,  assuming  they  become  harder  to  source  and  extract.   Extending  this  idea  further,  the  raw  materials  of  fusion;  deuterium  and  tritium  are   abundant  enough  to  be  practically  considered  infinite.  As  technology  improves,  costs   of  extracting  deuterium  and  lithium  and  converting  them  to  energy  should  fall.   Eventually  we  could  see  fusion  to  be  a  source  of  extremely  cheap  power:  no  scarcity,   massively  efficient  energy  transfer.   3.  Commercial  fusion  reactors  greatly  outperform  other  renewable  energy  sources.   PROBLEM:  Net  Energy  Gain   In  experimental  fusion  reactors  the  main  goal  is  to  achieve  a  net  energy  gain.   Essentially,  we  want  to  generate  more  power  from  the  fusion  reactions  within  reactor   than  we  put  in  to  start  and  maintain  those  reactions.  At  the  moment,  incredible   amounts  of  energy  are  expended  to  create  the  conditions  for  fusion  to  occur,  and  as  of   yet,  no  reactor  has  yet  produced  a  gain.  Running  a  nuclear  fusion  reactor  costs  more   energy  than  it  generates.  At  the  moment,  a  fusion  reactor  expends  energy.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 15. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     SOLUTION:  Continue  research!     Reactor  energy  efficiency  has  increased  every  decade  since  fusion  research   began(Andreani  2000).     In  fusion  research,  achieving  a  fusion  energy  gain  factor  Q  =  1  is  called  breakeven,   and  is  the  current  goal  in  fusion  research.  With  every  year  the  value  of  Q  that  we     obtain  climbs  closer  to  1.  In  a  commercial  fusion  reactor,  a  value  around  Q  =  20  would   be  more  suitable.  Some  external  power  will    be  required  for  things  that  help  us   regulate  the  plasma,  such  as  like  current  drive,  refueling,  profile  control,  and  burn   control.         Encouragingly,  in  1997  The  JET  tokamak  at  Culham  in  the  UK  produced  16  MW  of   fusion  power  –  which  is  the  current  world  record  for  fusion  power.     The  interior  of  the  JET  torus.   PROBLEM:  Heat/  Thermal  Pollution     An  unusual  yet  still  valid  argument  against  freely  available  cheap  energy  is  a   phenomenon  known  as  heat  pollution.    The  idea  is  that  with  cheap  abundant  energy,   most  will  be  wasted  as  heat.  This  can  have  detrimental  effects  on  marine  life.   Thermal  Pollution’s  Implications  For  Marine  Ecosystems   Thermal  pollution  can  have  a  great  influence  on  the  aquatic  ecosystem.       There  are  various  effects  on  the  biology  of  the  ecosystems  when  heated  effluents   reach  the  receiving  waters.  The  species  that  are  intolerant  to  warm  conditions  may   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 16. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   disappear,  while  others,  rare  in  unheated  water,  may  thrive  so  that  the  structure  of  the   community  changes.    Respiration  and  growth  rates  may  be  changed  and  these  may   alter  the  feeding  rates  of  organisms.  The  reproduction  period  may  be  brought  forward   and  development  may  be  speeded  up.  Parasites  and  diseases  may  also  be  affected.       An  increase  of  temperature  also  means  a  decrease  in  oxygen  solubility.  Any  reduction   in  the  oxygen  concentration  of  the  water,  particularly  when  organic  pollution  is  also   present,  may  result  in  the  loss  of  sensitive  species.   For  example,  in  summer  fish  may  have  high  metabolic  rates  because  their  body   temperatures  are  elevated  in  the  warm  water.  At  the  same  time  they  are  faced  with   relatively  low  oxygen  availability  because  warm  water  holds  less  dissolved  oxygen   than  cold  water.  The  interaction  of  these  factors  may  prove  critical.      Heated  water  can  kill  animals  and  plants  that  are  accustomed  to  living  at  lower   temperatures.     -­‐  Source:  http://www.lenntech.com/aquatic/heat.htm#ixzz0drT24IFS     SOLUTION:  Ecological  Safeguards   The  technology  already  exists  to  cool  water  before  it  is  returned  to  the  ecosystem.   Heat  pollution  isn’t  really  a  problem  with  effective  planning.      The  problem  is  not   complicated  but  may  be  expensive;  redesign  of  sites  which  are  discharging  hot  water   may  be  required.  Installing  the  following  hardware  at  offending  sites  would  be  an   effective  solution  to  heat  pollution:   Cooling  ponds:  man-­‐made  bodies  of  water  designed  for  cooling  by  evaporation,   convection,  and  radiation   Cooling  towers:  which  transfer  waste  heat  to  the  atmosphere  through  evaporation   and/or  heat  transfer   Cogeneration:  a  process  where  waste  heat  is  recycled  for  domestic  and/or  industrial   heating  purposes.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 17. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   A  cooling  pond  in  Novovoronezh,  Russia.  Many  such  sites  have  secondary,  recreational   purposes  that  include  fishing,  swimming,  boating,  camping  and  picnicking.  The  warm   waters  are  often  used  as  a  fish  hatchery.   PROBLEM:  Neutron  Production  in  a  DT   Fusion  Reaction   DT  fusion  reactions  produce  free  neutrons  moving  at  high  speed.  These  fast  neutrons   create   radioactivity   when   they   bombard   the   materials   of   which   the   fusion   reactor   is   constructed.  Thus,  while  the  fusion  process  does  not  produce  nuclear  waste  directly,   the   fusion   reactor   itself   does   become   radioactive,   and   its   components   must   be   disposed   of   safely   when   the   reactor   is   finally   shut   down,   after   the   normal   life   of   an   electric  power  plant.         SOLUTION:  Utilize  Unreactive  Materials  in   Reactor  Construction   Neutron  shielding  is  rather  simple.  Neutrons  are  easily  shielded  with  24  inches  or  so   of  water,  plastic,  or  anything  else  with  high  levels  of  hydrogen  to  provide  collision   partners  of  nearly  equal  mass  for  the  neutrons  to  collide  into.       The  problem  with  radioactive  materials  are  not  a  particular  hurdle.  This  problem  can   be  minimized  by  deliberately  choosing  construction  materials  that  either  produce  less   radioactivity  or  produce  radioactivity  that  dies  away  more  rapidly.  Such  materials  are   estimated  to  lose  their  radioactivity  within  50-­‐100  years,  as  oppose  to  the  thousands   of  years  required  for  fission  waste.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 18. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Due  to  it’s  low  level  of  radioactive  activation  in  neutron  bombardment,  vanadium  is  a   promising  candidate  for  DT  fusion  reactors.   Part 3.   Fusion  Energy  Cycles   The  fusion  process  can  occur  in  a  number  of  different  ‘energy  cycles’.  Each  one  fuses   different  materials,  with  different  quantities  of  matter,  and  releases  energy  in  different   ways.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 19. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     A  graph  comparing  the  performance  of  the  3  main  reactions;  The  Deutritium-­‐Tritium   reaction,  The  Deutirium-­‐Deutrium  process  and  the  proton-­‐Boron11  process.   Note: A Deuterium – Deuterium (DD) fusion reactor would provide limitless energy; it requires only water as a resource. However, even higher temperatures would be required for a DD reaction, it is unlikely to be considered in the near future. Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 20. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Helium  3  fusion  (3He3He)  though  another  promising  aneutronic  reaction,  is  rare  on  the   earth.  Helium  3  fusion  has  been  proposed  for  confinement  in  both  magnetic  or  inertial   fusion  reactors.  This  isotope  of  helium  is  thought  to  be  common  on  the  moon!   THE  DT  FUEL  CYCLE       The  DT  Fusion  reaction.  The  release  of  the  neutron  is  the  main  drawback  of  this  power   cycle.   According  to  the  Lawson  Criterion,  the  DT  fuel  cycle  is  the  easiest  fusion  process  to   start  and  maintain  within  a  terrestrial  reactor.  It  also  has  the  highest  power   production  rate  of  the  fusion  reactions.  The  generated  power  density  is  about  1  W  per   cm3.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 21. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   In  simple  terms,  the  ‘extra’  neutrons  on  the  D  and  T  nuclei  make  them  "larger"  and   less  tightly  bound,  and  the  result  is  that  the  cross-­‐section  for  the  D-­‐T  reaction  is  the   largest.  Also,  because  they  are  only  singly-­‐charged  hydrogen  isotopes,  the  electrical   repulsion  between  them  is  relatively  small.    It  is  relatively  easy  to  throw  them  at  each   other,  and  it  is  relatively  easy  to  get  them  to  collide  and  stick.  Furthermore,  the  D-­‐T   reaction  has  a  relatively  high  energy  yield.(Kobres  1994)     Disadvantages   However,  the  D-­‐T  reaction  has  the  disadvantage  that  it  releases  an  energetic  neutron.   Neutrons  can  be  difficult  to  handle,  because  they  will  "stick"  to  other  nuclei,  causing   them  to  become  radioactive,  or  causing  secondary  reactions.       ANEUTRONIC  FUSION   Aneutronic  fusion  means  fusion  that  does  not  produce  neutrons  as  a  by-­‐product.   There  are  several  candidates  for  aneutronic  fusion,  but  at  current  the  Hydrogen  and   Boron  11  cycle  seem  to  be  the  most  credible.       As  energy  equation  below  shows  -­‐  no  neutrons  are  produced,  however  this  cycle   requires  more  energy  to  start  than  the  DT  cycle.   p  +  B11  -­‐>  3  He4  +  8.7  MeV       The  pB11  cycle  is  the  most  promising  candidate  for  aneutronic  fusion.   The  nuclear  energy  from  the  p-­‐B  reaction  is  different  because  it  comes  from  the   proton-­‐  triggered  fission  of  a  light  element,  and  no  neutrons  are  released.  (Light   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 22. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   elements  are  considered  to  be  those  with  a  mass  number  less  than  56,  which  is  the   mass  number  of  iron.)       This  is  unusual  for  at  least  four  reasons:     1.  Light  elements  more  often  “combine”  or  fuse  to  make  heavier  elements;  they  don’t   normally  fission  to  make  elements  that  are  lighter  yet.     2.  Heavy  elements  such  as  235U  (Uranium  isotope  –  mass  number  235)  are   traditionally  considered  to  be  the  more  likely  candidates  for  fission  reactions.     3.  Fission  reactions  are  normally  triggered  by  the  absorption  of  a  neutron,  not  a   proton.     4.  Fissions  usually  result  in  the  emission  of  neutrons.     “Focus  Fusion”  refers  to  electricity  generation  using  a  Dense  Plasma  Focus  (DPF)   nuclear  fusion  generator.  It  uses  the  aneutronic  hydrogen-­‐boron  fuel  (pB11)  cycle.   If  Focus  Fusion  reactors  are  made  to  work,  they  will  provide  virtually  unlimited   supplies  of  cheap  energy  in  an  environmentally  sound  way  -­‐  no  greenhouse  gases,  and   no  radiation  -­‐  because  the  reaction  of  pB11  is  aneutronic.       Focus  Fusion  faces  two  main  technical  challenges:     •   It  requires  much  higher  ion  temperatures  and  plasma  density-­‐confinement   time  product  than  Deuterium-­‐Tritium  fuel;     •   and  x-­‐rays  produced  by  the  reaction  reduce  temperatures.   The  plasma  focus  device  consists  of  two  cylindrical  copper  or  berillyum  electrodes   nested  inside  each  other.  The  outer  electrode  is  generally  no  more  than  6-­‐7  inches  in   diameter  and  a  foot  long.  The  electrodes  are  enclosed  in  a  vacuum  chamber  with  a  low   pressure  gas  (the  fuel  for  the  reaction)  filling  the  space  between  them.   Focus  fusion  reactors  are  expected  to  be  less  expensive  for  the  same  amount  of  power.   Using  this  power  cycle,  a  wheelbarrow  load  of  the  Boron  in  Boraxo,  a  brand  of   American  hand  soap  would  be  sufficient  to  provide  all  the  electrical  needs  of  a  small   city  for  a  year.   -­‐Sources:  http://focusfusion.org/index.php/site/article/focus_fusion_reactor/   William  W.  Flint  -­‐ http://www.polywellnuclearfusion.com/Clean_Nuclear_Fusion/Download_Book.html     MAGNETISED  TARGET  FUSION  /   SPHEROMAK  FUSION   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 23. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     General  Fusion's  reactor  design  consists  of  220  pistons  that  simultaneously  ram  a  metal   sphere.  This  creates  a  shock  wave  inside  the  sphere,  so  that  plasma  rings  in  the  center   create  a  fusion  reaction. General  Fusion  plans  to  try  a  relatively  low-­‐tech  approach  to  fusion  called  magnetized   target  fusion  (MTF).   The  reactor  consists  of  a  metal  sphere  with  a  diameter  of  three  meters.  Inside  the   sphere,  a  liquid  mixture  of  lithium  and  lead  spins  to  create  a  vortex  with  a  vertical   cavity  in  the  centre.  Then,  the  researchers  inject  two  donut-­‐shaped  plasma  rings  called   spheromaks  into  the  top  and  bottom  of  the  vertical  cavity  -­‐  like  "blowing  smoke  rings   at  each  other,"  explains  Doug  Richardson,  chief  executive  of  General  Fusion,  the   Canadian  energy  company  that  is  driving  the  MTF  project.     The  last  step  is  mainly  well-­‐timed  brute  mechanical  force.  220  pneumatically   controlled  pistons  on  the  outer  surface  of  the  sphere  are  programmed  to   simultaneously  ram  the  surface  of  the  sphere  one  time  per  second.  This  force  sends  an   acoustic  wave  through  the  spinning  liquid  that  becomes  a  shock  wave  when  it  reaches   the  spheromaks  in  the  center,  triggering  a  fusion  burst.  Specifically,  the  plasma's   hydrogen  isotopes  -­‐  deuterium  and  tritium  -­‐  fuse  into  helium,  releasing  neutrons  that   are  trapped  by  the  lithium  and  lead  mixture.  The  neutrons  cause  the  liquid  to  heat  up,   and  the  heat  is  extracted  through  a  heat  exchanger.  Part  of  the  resulting  heat  is  used  to   make  steam  to  spin  a  turbine  for  power  generation,  while  the  rest  goes  back  to   recharge  the  pistons.     General  Fusion  has  just  started  developing  simulations  of  the  project,  and  hopes  to   build  a  test  reactor  and  demonstrate  net  gain  within  five  years.  If  everything  goes   according  to  plan,  they  will  then  build  a  100-­‐megawatt  prototype  reactor  to  be   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 24. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   finished  five  years  after  that,  which  would  cost  an  estimated  $500  million.     Source:  Lisa  Zyga,  Physorg.com  |  http://www.physorg.com/news168623833.html INERTIAL CONFINEMENT FUSION/ INERTIAL FUSION ENERGY [IFE]   While  magnetic  confinement  seeks  to  extend  the  time  that  ions  spend  close  to  each   other  in  order  to  facilitate  fusion,  the  inertial  confinement  strategy  seeks  to  fuse  nuclei   so  fast  that  they  don't  have  time  to  move  apart     Directed  onto  a  tiny  deuterium-­‐tritium  pellet,  the  enormous  energy  influx  evaporates   the  outer  layer  of  the  pellet,  producing  energetic  collisions  that  drive  part  of  the  pellet   inward.  The  inner  core  is  increased  a  thousandfold  in  density  and  its  temperature  is   driven  upward  to  the  ignition  point  for  fusion.  Accomplishing  this  in  a  time  interval  of   10^-­‐11  to  10^-­‐9  seconds  does  not  allow  the  ions  to  move  appreciably  because  of  their   own  inertia;  hence  the  name  inertial  confinement.   Atmosphere Formation Laser beam rapidly heats the surface of the fusion target forming a surrounding plasma envelope. Compression Fuel is compressed by the rocket-like blowoff of the hot surface material. Ignition Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 25. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   During the final part of the laser pulse, the fuel core reaches 20 times the density of lead and ignites at 100,000,000 degrees Celcius. Burn Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy. Key: Laser  energy     Blowoff     Inward  transported  thermal  energy       The  National  Ignition  Facility  (NIF)  at  Lawrence  Livermore  Laboratory  is  exp-­‐ erimenting  with  using  laser  beams  to  induce  fusion.  In  the  NIF  device,  192  laser   beams  will  focus  on  single  point  in  a  10-­‐meter-­‐diameter  target  chamber  called  a   hohlraum.  A  hohlraum  is  "a  cavity  whose  walls  are  in  radiative  equilibrium  with  the   radiant  energy  within  the  cavity"     A  hohlraum  mock  up  to  be  used  on  the  NIF  laser   Other  effects  like  the  symmetry  of  the  implosion  are  also  important  for  the  ignition.     The  IFE  laser  must  operate  at  five  to  ten  shots  a  second  depending  on  the  target  yield   per  shot  and  the  desired  electric  output  of  the  power  plant.  Currently  two  classes  of   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 26. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   laser  are  being  considered  in  the  United  States:  the  krypton-­‐fluoride  (KrF)  gas  laser   and  the  diode-­‐pumped  solid  state  laser  (DPSSL).     Like  the  magnetic-­‐confinement  fusion  reactor,  the  heat  from  inertial-­‐confinement   fusion  will  be  passed  to  a  heat  exchanger  to  make  steam  for  producing  electricity.       -­‐  Source:  Rochster  University  |   http://www.lle.rochester.edu/02_visitors/02_grad_inertialconf.php     In  the  resulting  conditions  —  a  temperature  of  more  than  100  million  degrees  Celsius   and  pressures  100  billion  times  the  Earth’s  atmosphere  —  the  fuel  core  will  ignite  and  a   thermonuclear  burn  will  quickly  spread  through  the  compressed  fuel,  releasing  ten  to   100  times  more  energy  than  the  amount  deposited  by  the  laser  beams.  Only  a  few  NIF   experiments  can  be  conducted  in  a  single  day  because  the  facility's  optical  components   need  time  to  cool  down  between  shots.  In  an  IFE  power  plant,  targets  will  be  ignited   five  to  ten  times  a  second!   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 27. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     In  direct-­‐drive,  the  capsule  is  directly  irradiated  by  the  laser  beams.  In  indirect-­‐ drive,  the  capsule  is  placed  inside  a  hohlraum;  made  with  high-­‐atomic-­‐mass  materials   like  gold  and  lead  with  holes  on  the  ends  for  beam  entry.   Source:  Rick  Hodgin  -­‐  http://www.geek.com/articles/chips/national-­‐ignition-­‐facility-­‐ preps-­‐self-­‐sustaining-­‐fusion-­‐tests-­‐for-­‐2010-­‐20090415/   The  HiPER  Laser  Fusion  Reactor   HiPER  is  a  European  ICF  facility  being  designed  to  demonstrate  the  feasibility  of  laser   driven  fusion  as  a  future  energy  source.    This  is  made  feasible  by  the  advent  of  a   revolutionary  approach  to  laser-­‐driven  fusion  known  as  'Fast  Ignition'.  HiPER  will   use  a  unique  laser  configuration,  currently  estimated  at  200kJ  long  pulse  laser   combined  with  a  70kJ  short  pulse  laser.     The  HiPER  Science  Programme   It  will  also  enable  the  investigation  of  the  science  of  truly  extreme  conditions  –  creating   environments  which  cannot  be  produced  elsewhere  on  Earth  (temperatures  of  hundreds   of  millions  of  degrees,  billion  atmosphere  pressures,  and  enormous  electric  and  magnetic   fields).   The  new  research  programs  will  include  the  following  areas   • Astrophysics  in  the  laboratory     • Behavior  of  matter  in  truly  extreme  conditions       • Material  science  in  the  challenging  “warm  dense”  regime       • Nuclear  physics  and  nucleosynthesis       • Atomic  physics       • Turbulent  flow  at  very  high  Mach  numbers       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 28. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   • Relativistic  particle  beam  studies  and  applications  •   plasma  physics  at  high   energy  density       • Laser  plasma  interaction  physics       • Quantum  vacuum  studies       • Fundamental  physics  in  ultra-­‐strong  electric  fields.     Artist’s  impression  of  the  HiPER  facility   The  project  was  accepted  onto  the  ‘European  Roadmap’  in  October  2006,  with  the  UK   agreeing  to  take  a  leadership  role  in  January  2007.The  HiPER  facility  is  anticipated  to   open  towards  the  end  of  the  next  decade  dependent  on  the  success  of  the   preparatory  phase  project.  The  UK  is  the  leading  contender  to  host  the  HiPER  laser   facility.   Source:  The  Hiper  project  |  http://www.hiper-­‐laser.org/keyfacts/KeyFacts.asp   Fusion  Confinement  Devices   Regardless  of  the  energy  cycle  of  nuclear  fusion  we  use,  certain  conditions  are  required   to  start  the  reaction  and  contain  the  temperamental  plasma  environment  in  which  the   atomic  process  takes  place.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 29. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Another  view  inside  the  JET  torus,  a  tokamak  design.   THE  TOKAMAK   The  Tokamak  was  first  discussed  in  the  1950s  by  Igor  Tamm  and  Andrei  Sakharov  in   the  Soviet  Union.  The  word  Tokamak  is  actually  an  acronym  derived  from  the  Russian   words  toroid-­‐kamera-­‐magnit-­‐katushka,  meaning  “the  toroidal  chamber  and   magnetic  coil.”    This  donut-­‐shaped  configuration  is  principally  characterized  by  a  large   current,  up  to  several  million  amps,  which  flows  through  the  plasma.    The  plasma  is   heated  to  temperatures  more  than  a  hundred  million  degrees  centigrade  (much   hotter  than  the  core  of  the  sun)  by  high-­‐energy  particle  beams  or  radio-­‐frequency   waves.       The  Problem  and  Importance  of  Heat  In  The  Tokamak   In  an  operating  fusion  reactor,  part  of  the  energy  generated  will  serve  to  maintain  the   plasma  temperature  as  fresh  deuterium  and  tritium  are  introduced.  However,  in  the   startup  of  a  reactor,  either  initially  or  after  a  temporary  shutdown,  the  plasma  will   have  to  be  heated  to  100  million  degrees  Celsius.     In  current  tokamak  (and  other)  magnetic  fusion  experiments,  insufficient  fusion   energy  is  produced  to  maintain  the  plasma  temperature.  Consequently,  the  devices   operate  in  short  pulses  and  the  plasma  must  be  heated  afresh  in  every  pulse.     Ohmic  Heating   Since  the  plasma  is  an  electrical  conductor,  it  is  possible  to  heat  the  plasma  by  passing   a  current  through  it;  in  fact,  the  current  that  generates  the  poloidal  field  also  heats  the   plasma.  This  is  called  ohmic  (or  resistive)  heating;  it  is  the  same  kind  of  heating  that   occurs  in  an  electric  light  bulb  or  in  an  electric  heater.     Neutral-­‐Beam  Injection   Neutral-­‐beam  injection  involves  the  introduction  of  high-­‐energy  (neutral)  atoms  into   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 30. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   the  ohmically  -­‐-­‐  heated,  magnetically  -­‐-­‐  confined  plasma.  The  atoms  are  immediately   ionized  and  are  trapped  by  the  magnetic  field.  The  high-­‐energy  ions  then  transfer  part   of  their  energy  to  the  plasma  particles  in  repeated  collisions,  thus  increasing  the   plasma  temperature.     Radio-­‐frequency  Heating   In  radio-­‐frequency  heating,  high-­‐frequency  waves  are  generated  by  oscillators  outside   the  torus.  If  the  waves  have  a  particular  frequency  (or  wavelength),  their  energy  can   be  transferred  to  the  charged  particles  in  the  plasma,  which  in  turn  collide  with  other   plasma  particles,  thus  increasing  the  temperature  of  the  bulk  plasma.     The  Magnetic  Field  In  a  Tokamak   Because  of  the  electric  charges  carried  by  electrons  and  ions,  a  plasma  can  be   confined  by  a  magnetic  field.  In  the  absence  of  a  magnetic  field,  the  charged  particles   in  a  plasma  move  in  straight  lines  and  random  directions.  Since  nothing  restricts  their   motion  the  charged  particles  can  strike  the  walls  of  a  containing  vessel,  thereby   cooling  the  plasma  and  inhibiting  fusion  reactions.  But  in  a  magnetic  field,  the   particles  are  forced  to  follow  spiral  paths  about  the  field  lines.  Consequently,  the   charged  particles  in  the  high-­‐temperature  plasma  are  confined  by  the  magnetic  field   and  prevented  from  striking  the  vessel  walls.     The  flow  in  the  plasma  is  mainly  used  to  generate  the  enclosing  magnetic  field.  In   addition,  it  provides  effective  initial  heating  of  the  plasma.  The  flow  in  the  plasma  is   normally  induced  by  a  transformer  coil.       This  simplified  diagram  of  a  tokamak  describes  what  part  each  component  plays  in   confining  plasma.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 31. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   In  order  to  minimize  particle  losses  caused  from  leaking  along  the  magnetic  field  lines,   the  chamber  is  bent,  which  also  bends  the  magnetic  field  lines.  This  creates  the   distinctive  torus  shape  also  known  as  a  “toroidal  pinch”.  However,  the  curvature  of  the   magnetic  field  lines  introduces  new  problems.  Strong  externally  produced  toroidal   magnetic  fields  are  necessary  to  stabilize  the  plasma.  These  are  generated  by  the   solenoidal  magnet     The  solenoid  works  by  passing  a  current  through  an  electromagnet  wrapped,  one  turn   after  the  other,  along  the  full  length  of  the  tube.  It  reduces  the  kinking  problem  in  the   plasma  by  adding  an  external  source  of  magnetic  field  that  "stiffens"  the  plasma   column.       A  solenoid  is  a  3  dimensional  coil  which  creates  the  magnetic  field  that    envelopes  the   torus.     A  tokamak  consists  mainly  of  a  toroidal  tube  big  enough  to  hold  the  plasma  that  serves   as  fuel;  a  solenoidal  magnet  wrapped  around  the  tube;  and  a  transformer  to  drive  a   current  in  the  plasma.       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 32. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Diagram  showing  how  particles  are  trapped  within  the  cross  section  of  plasma   constrained  within  a  tokamak.     The  Energy  Generation  Process  Within  The  Tokamak   • The  fusion  reactor  heats  a  stream  of  deuterium  and  tritium  fuel  to  form  high-­‐ temperature  plasma.  It  squeezes  the  plasma  so  that  fusion  can  take  place.     • The  lithium  blankets  outside  the  plasma  reaction  chamber  absorb  high-­‐energy   neutrons  from  the  fusion  reaction  to  make  (‘breed’)  more  tritium  fuel.  The   blankets  will  also  get  heated  by  the  neutrons.     • The  heat  will  be  transferred  by  a  water-­‐cooling  loop  to  a  heat  exchanger  to   make  steam.     • The  steam  will  drive  electrical  turbines  to  produce  electricity.     • The  steam  will  be  condensed  back  into  water  to  absorb  more  heat  from  the   reactor  in  the  heat  exchanger.       Source:  Princton  Plasma  Physics  Laboratory  |  http://www.pppl.gov/fusion_basics/     At  this  time,  of  all  the  fusion  projects,  tokamak  confinement  is  getting  the  most   funding  and  the  most  media  attention.  There  are  2  major  new  tokamak  projects  under   construction,  ITER  in  Europe  and  SST-­‐1  in  India.  Both  are  designed  to  showcase   current  advancements  in  magnetic  confinement  technology  to  the  world,  and  to   provide  the  environment  to  research  the  next  phase  of  tokamak  technology.     THE  POLYWELL/  BUSSARD  FUSION   REACTOR     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 33. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Robert  W.  Bussard  (August  11,  1928  –  October  6,  2007)  was  an  American  physicist  who   worked  primarily  in  nuclear  fusion  energy  research,  and  who  pioneered  the  polywell   concept.     The  name  polywell  is  a  portmanteau  of  "polyhedron"  and  "potential  well."    The   Polywell  is  spherical  instead  of  the  donut  shape  of  the  Tokamak.    The  polywell  method   of  achieving  fusion  has  often  been  referred  to  as  the  “long  shot  to  fusion”  and  sadly,   has  been  treated  this  way  by  the  fusion  community  at  large       As  a  fusion  source,  polywell  researchers  compete  with  tokamak  derived  technology   for  funding.  And  in  the  funding  battle,  the  polywell  is  definitely  losing,  However  in   2009  a  R&D  contract  worth  $2  million  a  year  from  the  US  Navy  was  issued,  who   believe  the  polywell  may  be  a  useful  power  source  for  ships.  This  is  promising,  and   many  polywell  advocates  have  stated  that  positive  results  can  be  seen  with  a  fraction   of  the  funding  expended  on  Tokamak  technology  (which  is  a  good  thing  because  it   looks  like  that’s  what  they  will  get!).     Source:  Federal  Business  Opportunities.gov  |   https://www.fbo.gov/index?s=opportunity&mode=form&id=fc9fd44171017393510d 46e2f8154296&tab=core&_cview=0&cck=1&au=&ck=     The  Polywell  community  is  a  small  but  vocal    ‘open  source‘  collective  of  scientific   enthusiasts  and  independent  researchers.         Confinement  Within  The  Polywell   The  Polywell  uses  inertial  electrostatic  confinement  (IEC)  to  create  the  conditions   for  fusion.         When  all  six  electromagnets  within  the  polywell  are  energized,  the  magnetic  fields   meld  into  a  nearly  perfect  sphere.  Electrons  are  injected  into  the  sphere  to  create  a   superdense  core  of  highly  negative  charge.  Given  enough  electrons,  the  electrical  field   can  be  made  strong  enough  to  induce  fusion  in  selected  particles.  Positively  charged   protons  and  boron-­‐11  ions  are  injected  into  the  sphere  and  are  quickly  accelerated   into  the  centre  of  the  electron  ball  by  its  high  negative  charge.  Protons  and  boron  ions   that  overshoot  the  centre  are  pulled  back  with  an  oscillatory  action  of  a  thousand  or   more  cycles.     Source:  R.  Colin  Johnson  |  EE  Times   http://www.eetimes.com/showArticle.jhtml?articleID=199703602       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 34. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     The  current,  third-­‐generation  prototype  uses  six  doughnut-­‐shaped  electromagnets  to   create  a  cube  in  which  to  confine  the  fusion  reactions  in  a  strong  magnetic  field.  The   original  prototype  operated  in  air  and  was  just  centimetres  in  diameter;  the  current   design  operates  in  a  vacuum  chamber  and  measures  roughly  a  cubic  yard.       A  2D  representation  of  the  magnetic  fields  operating  in  a  polywell.  The  coils  trap   electrons  and  keep  them  in  a  very  small,  tightly  packed  group  called  a  potential  well.   This  well  attracts  and  accelerates  the  Hydrogen  and  Boron  nuclei.  When  they  collide,  the   nuclear  reaction  is  triggered.  If  there  is  a  system  failure,  the  polywell  simply  loses  its   magnetic  field  and  the  process  stops.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 35. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Conclusion   It  is  evident  that  there  are  a  great  many  different  possibilities  for  fusion;  in  both  the   choice  of  fuel  cycle  and  confinement  method  used.  Though  now  over  50  years  old,  the   field  is  still  very  young.  A  great  deal  of  emerging  technologies  look  promising  within   fusion.  Advances  in  other  areas  such  as  materials  technology,  could  be  a  boon  to  the   efforts  of  fusion  researchers  looking  to  create  more  efficient  reactors.  Similarly,   disruptive  technology  such  as  the  polywell  and  the  plethora  of  projects  lumped  under  the   term  ‘cold  fusion’  could  have  payoffs,  though  the  odds  of  this  are  not  considered  certain.   It  appears  that  within  the  fusion  community,  current  preference  is  towards  the  DT  cycle,   magnetically  confined  in  a  tokamak  environment.  This  is  obvious  in  the  amounts  of   money  being  spent  on  in  Europe  on  the  ITER  project,  although  the  USA  is  actively   researching  a  variety  of  inertial  confinement  technologies  in  tandem  with  their  own   tokamak  efforts.    With  advancements  in  future  we  may  be  looking  at  aneutronic  fusion,   though  the  road  to  commercial  fusion  is  ‘still’  some  decades  off.   The  next  section  addresses  public  awareness  and  opinion  of  fusion,  with  data  gathered   from  Europe  and  the  USA.   Public  awareness  of  fusion  -­‐  Getting  The   Message  Out Obviously,  informed  public  and  political  awareness  of  nuclear  fusion  will  be  an   extremely  important  factor  in  ensuring  that  fusion  gets  the  attention  it  deserves.  To  be   viable  as  an  energy  source,  fusion  must  be  understood,  at  least  at  some  level,  by  the   lay  public  who  would  one  day  reap  its  benefits.     Policymakers  in  energy  must  better  understand  what  the  fusion  is,  its  economic   implications,  and  long  term  performance  predictions.    Educators  and  thought  leaders   such  as  teachers  need  to  be  given  a  clear  understanding  of  the  subject  so  that  the   message  is  communicated  properly  by  these  vocal,  credible  sections  of  the   population.   Furthermore,  it  is  important  to  educate  the  public  on  the  distinctions  between  fusion   and  fission,  especially  as  the  definition  nuclear  (especially  thermonuclear)  has  a   negative  association  with  weaponry,  which  is  unavoidable.     Finally,  the  obvious  benefits  of  fusion  must  be  communicated  in  a  compelling,  but   impartial  and  factual  manner.  I  believe  that  encouraging  public  support  and  indeed,   approval  of  fusion  could  help  contribute  to  maintaining  political  pressure  that  ensures   fusion  gets  the  economic  support  that  it  needs  to  become  a  reality.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 36. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   However,  it  is  clear  that  competition  for  public  mindshare  is  extremely  tough.  In  this   time  of  mass  media  the  amount  of  information  the  average  person  is  exposed  to  is   greater  than  ever  before.  The  fusion  message  has  to  contend  with  popular  culture,   constant  marketing,  and  the  concerns  of  normal  day  to  day  life;  a  great  many  global   and  personal  issues  take  up  the  average  person’s  attention  and  time.  Fusion  is  simply   not  a  priority  for  most  people.  This  is  understandable  perhaps  in  the  context  of  a  low   awareness  of  the  extent  of  the  energy  problem  facing  us  in  the  coming  decades.   Worse  still,  certain  anti  nuclear  pressure  groups  approach  fusion  in  the  same   combative  manner  they  have  reserved  for  fission.  For  example,  a  consortium  of  French   pressure  groups  Sortir  du  Nucleaire  (Get  Out  of  Nuclear  Energy),claimed  that  ITER   was  a  hazard  because  “scientists  did  not  yet  know  how  to  manipulate  the  high-­‐energy   deuterium  and  tritium  hydrogen  isotopes  used  in  the  fusion  process.”   -­‐  Source:  Deustch  Welle  -­‐  http://www.dwworld.de/dw/article/0,,1631650,00.html   In a report entitled Public Information in European Fusion Energy Research: Methods and Challenges, released by specialists working at fusion policy and research institutions around the EU, the opinions and awareness of the public in the EU towards fusion where measured. The following social groups where identified as communication targets. Each requires a different outreach strategy and message. Note: PI: Public information • Decision makers: due to direct link between the EU energy policy and the European fusion research this group needs to be informed on both European and national levels about the mission progress. The group consists of judicious, motivated, busy people. • Media: as a key intermediate to pro-active communication with general public, media (TV, radio, newspapers, journals) deserve high priority PI, namely personal relations. In fusion, media relations are established, as a rule, on national levels. • Schools & Universities: Teachers act as efficient intermediates to young people who will probably decide about the industrial future of fusion. Even before, fusion R&D will need a supply of new determined experts. Notice that fusion has relatively sparse professional links to Universities compared to other major research projects. • Interested Public: Although fusion cannot hope for a major pro-active influence of general public, any of those who are interested and request information must feel free to obtain it, hence the passive PI must be very broad and highly responsive. • Industry: Nowadays, the main topics in fusion research have expanded from basic plasma physics towards more technological tasks, e.g. to material research, which calls for direct involvement of different industries including their R&D. PI activities have to follow these developments and promote the opportunities. • Fusion Community: Due to international dimension of the research it is vital to foster good relations among fusion centres, calling for broad communications. • Scientific Community: support from the influential category of “other scientists” can be expected only if fusion community manages to inform them properly about the fusion research, its mission, results and strategy, as well as about joint interests.   Source:  http://www.iop.org/Jet/fulltext/EFDP05027.pdf   Findings:  The  report’s  findings  on  the  public  awareness  of  nuclear  fusion  where   not  very  promising.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 37. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   • For the general public the challenge of producing energy from nuclear fusion is quite abstract • It turns out that the level of education and social background tend to play a major role in awareness of nuclear fusion as future energy source. • The European public is badly informed about nuclear fusion research in the EU (~3% informed) • As far as energy-related research in the EU is concerned, nuclear fusion appears to be at the third position on the priority list of those areas where people would like the EU to do more, with 21% of support, well far behind renewable energy sources for instance (69%). • There are significant concerns regarding the capability of nuclear fusion power to meet the public safety and environmental requirements: almost 35% believe it won’t be safe (!), will produce long-term nuclear waste and will contribute to global warming. • These negative opinions are remarkable namely in relation to very low public awareness of fusion, which contradiction can be clearly ascribed to the prejudices associated with the tag “nuclear”. • Nuclear fusion is also viewed as the second most efficient potential energy source (22%) and • It is believed (59%) that it needs much more research to confirm its potential. The report made the following conclusions on designing an effective communication strategy: • Clear messages: Key messages need to be simple and easy to find. Moreover, the communication has to be comprehensible and adapted to the target group, avoiding specialized terminology without compromising on the message contents. The requirements for reliable translations and interpreters call for considerable involvement of individual Associations in this respect. • Empathy: The form in which information is presented (including its emotional impacts) needs to be thoroughly appreciated. In particular, application of professional graphics has to be encouraged. Use of illustrations, photographs and videos beyond technical documentation should become routine • Division of responsibilities: In the new era of fusion, with many different world cultures working together on extraordinarily broad technological projects like ITER, it will be beyond capacity of scientists alone to assume all aspects of communication. Implementation of these three recommendations will put strain namely on internal communication, for scientists - they may feel that the above efforts are not a high priority activity. Anyway, in near future this will represent just one of many similar challenges for fusion scientists, who will find themselves among industrial engineers, nuclear regulators, managers from different countries etc. A highly professional communication team, combined with good communication training for a sufficient number of managers, scientists and engineers, can actually relieve many of these strains while concentrating on the primordial objective, the improvement of public understanding of fusion. Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 38. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   PANS (Public Awareness Of Nuclear Science) The  PANS  was  a  prototype  Public  Information  society,  which  has  formed  the   framework  for  much  of  the  more  organized  communication  efforts  now  being  made  in   fusion.     The  objective  of  PANS  (Public  Awareness  of  Nuclear  Science)  was  to  establish  a   European-­‐wide  network  for  communicating  information  on  positive  achievements,   techniques  and  diverse  applications  of  nuclear  physics  to  the  general  public.     The  network  comprises  a  group  of  about  23  nuclear  scientists  from  all  over  Europe.  A   number  of  specific  activities  were  developed,  aiming  at:     •  Secondary  school  pupils  and  teachers   •  The  general  public   •  Opinion-­‐  and  decision-­‐makers,  government  and  administrations       The  project’s  leading  achievement  was  the  science  communication  book  “Nucleus  -­‐  A   Trip  into  the  Heart  of  Matter”  published  in  2001  (Canopus  and  John  Hopkins   University  Press  in  the  US).     Many  of  the  original  collaborators  went  on  to  create  a  web-­‐based  science   communication  system  (webSCS),  which  carries  factual  and  topical  information  about   the  various  uses  of  nuclear  science.     Source:   http://ec.europa.eu/research/infocentre/article_en.cfm?id=/research/star/index_en. cfm?p=03_main&item=Energy&artid=1900     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 39. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     American  organizations  are  also  using  the  internet  for  educational  outreach.     EFDA (European Fusion Development Agreement)     In  1999,  the  European  Fusion  Development  Agreement  (EFDA)  was  created  to  provide   a  framework  between  European  fusion  research  institutions  and  the  European   Commission  to  strengthen  their  coordination  and  collaboration,  and  to  participate  in   collective  activities.   Between  1999  and  2007  EFDA  was  responsible  for  the  exploitation  of  the  Joint   European  Torus,  the  coordination  and  support  of  fusion-­‐related  research  &   development  activities  carried  out  by  the  Associations  and  by  European  Industry  and   coordination  of  the  European  contribution  to  large  scale  international  collaborations,   such  as  the  ITER-­‐project.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 40. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   To  reach  its  objectives,  EFDA  carries  out  the  following  group  of  activities:     • Collective  use  of  JET,  the  world´s  largest  fusion  experiment,  which  is  located   near  Oxford  (United  Kingdom).       • Training  and  carrier  development  of  researchers,  promoting  links  to   universities  and  carrying  out  support  actions  for  the  benefit  of  the  fusion   programme       • Reinforced  coordination  of  fusion  physics  and  technology  research  and   development  in  EU  laboratories     -­‐Source:  European  Fusion  Development  Agreement  |   http://www.efda.org/about_efda/what_is_efda.htm   Conclusion: In  Europe,  there  are  a  number  of  public  outreach  organizations  attempting  to  inform   the  public  about  fusion  (specifically  though  magnetic  confinement).  The  EFDA  works   as  something  of  an  umbrella  organization  and  is  developing  a  series  of  very  effective   communicational  tools  on  its  website,  which  it  is  encouraging  teachers  and  other   educators  to  make  use  of.  There  is  a  well-­‐informed  academic  and  amateur  fusion   community  with  excellent  internal,  trans-­‐national  communication  links.    However,   European  public  understanding  of  fusion  is  terrible;  many  are  unaware  of  its  proper   definition,  and  the  ‘nuclear’  stigma  has  remained.  Some  groups  are  even  opposed  to  it,   thinking  research  budgets  better  spent  elsewhere!   Main  concerns  in  the  public  perception  of  fusion  are  as  followed.   • High  costs;     • Uncertainty  of  payoff  from  R&D  investments;     • The  feasibility  of  the  technology;     • The  visibility  of  the  results;     • The  need  to  set  financial  limits  on  R&D  expenditure.     Generally  speaking,  the  lay  public  seems  to  be  more  interested  in  technologies  ‘closer   to  their  lives’,  such  as  health  or  environment  related.  They  pay  little  attention  and  are   not  aware  of  the  wider  social  and  political  dimensions  of  the  associated  R&D   programme.     ITER  is  without  a  doubt,  our  main  opportunity  to  bring  public  awareness  to   fusion.  (Prades  López  et  al.  2008).  The  entire  process  should  be  orchestrated  with  as   much  media  furor  as  possible,  making  use  of  all  the  modern  tools  of  communication   the  internet  offers,  such  as  social  media  and  blogging.  As  the  fusion  community  is   extremely  technologically  savvy,  co-­‐coordinating  this  sort  of  effort  should  not  be   particularly  hard,  as  we  are  already  seeing  organizations  such  as  JET  maintaining  their   own  YouTube  channels  and  proactively  communicating  with  the  public.  Via  online  and   offline  outreach.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 41. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   “In  contrast  with  the  past,  the  proponents  of  nuclear  fusion  are  to  some  extent   attempting  to  come  to  grips  with  the  social  circumstances.  Until  now  they  have  taken   the  optimistic  view  that  if  they  simply  built  a  nuclear  fusion  reactor,  society  would   accept  it.  Now  they  are  sensing  the  need  to  make  an  effort  to  gain  the  acceptance  of   society.  Even  greater  vigilance  will  be  necessary  in  future.”  -­‐  (Tadahiro  Katsuta,  CNIC,   Japan)   Expert  Interviews   In  researching  fusion  I  thought  it  would  be  best  to  obtain  opinions  from   people  better  informed  than  me.  Below  are  two  interviews  I  conducted  with   internationally  recognised  experts  on  the  subject.   Chris Warrick (Culham, UK) is a member of the Public Relations team at the UKAEA Culham Science Centre. After graduating with a degree in physics from the University of Wales, Chris joined UKAEA at Culham in Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 42. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   1990 working as an experimental physicist on various fusion devices until 2001. He was particularly involved with plasma microwave heating systems and plasma radiation measurement devices. Since 2001, Chris has been a member of the Public Relations team with particular responsibility for education and public outreach When are we looking at the first commercially operated fusion plant? Easy question to begin with! If we assume 10 years to build ITER, and time then to get the results to enable the design of the first demonstration power station and then 5-10 years to build this first demo power station, we are looking at 25-30 years. For widespread commercial power from fusion - probably 40-50 years. What method of confinement is most likely to prevail in commercial fusion? Here at Culham, the JET and MAST tokamak devices employ magnetic confinement of the fusion plasma. There are parallel research streams into laser induced fusion - fusion of tiny fuel pellets by implosion with laser beams. It is fair to say, that in terms of scalability to fusion power stations, the magnetic confinement research is probably closer to economically viable power. Could a child born today be seeing 'free' energy in his/her lifetime? Fusion would never profess to offer free energy. Modelling predictions suggest fusion will be economically competitive with other forms of generation - but it will never be free. Neither will any other generating method. Is 'cold' fusion believed to be scientifically feasible? No is the quickest answer. There is no firm evidence that neutrons observed in cold fusion experiments are actually generated from fusion. There is clearly interesting physics going on here - but this is almost certainly not fusion. What is the best way we have for obtaining naturally occurring elemental hydrogen? We require two forms (or isotopes) of hydrogen to make magnetic fusion here on earth. These are Deuterium and Tritium. Deuterium is easily obtained from water - all water has traces of Deuterium - about one in every 8000 water molecules. Tritium is very rare - so we are going to need to generate this ourselves from a fusion power station. It is envisaged that the neutrons we will produce from the fusion reaction will react with a surrounding blanket of Lithium - and make the Tritium we will need. Hence, we will use up Lithium to make the Tritium we need. Lithium is a very common element - so we have abundant fuel reserves. How many fusion plants would we need to supply the energy needs of the planet? It is expected that fusion power plants will produce 1-2 GW of electricity - about the same as a modern fossil fuel or fission power station will produce. This about enough electricity for 2-3 million people - so for the UK - about 30 fusion power stations would be enough for all our electricity needs. However, we would never argue that fusion should generate all electricity - there should be a balanced portfolio with other sources (renewables, fission etc). How aware would you say the public are of nuclear fusion? Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 43. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Probably not enough. We strive very hard here - through public and schools outreach programmes and through media coverage - to increase the public's knowledge of fusion - and its potential as a future source of energy. This is not always easy - and one reason is how long it will take to be commercially available. What are the most effective ways of educating them? See above. Media is the way to get the message out to millions of people - when we had some coverage on BBC Horizon last year - that created a lot of interest. Are there any possible disaster scenarios that could result from misuse of a fusion reaction? No! The plasma inside one of our machines - although incredibly hot - 100s of millions of degrees C - is very small in mass (fractions of a gramme). If we push the plasma in any way (increase its mass too much, lose its confining magnetic field) it will become unstable, strike the wall of the container, cool rapidly and extinguish. This inherent feature if the plasma - that it will stop itself if pushed away from its natural stability limits - ensures that an internally driven accident is impossible to conceive. Are there any other hypothetical power sources that could surpass fusion in our far future? In a sense, I could say "maybe - but they have not been discovered yet". My own view is that the three large scale electricity generating options that can make a big contribution in the future are fusion, solar (much potential here but tend to be uneconomic at present) and new generation fission. I would like to see a world where these three are pushed as hard as possible .       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 44. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Tadahiro Katsuta (Tokyo, Japan) has a PhD in plasma physics from Hiroshima University (1997). He is currently a Research Associate at the University of Tokyo. From 1999-2005 he researched the economics of nuclear power relative to other sources of electrical power, as an analyst at the Citizens Nuclear Information Centre in Tokyo.   Apr.  10th,  2010   *When  are  we  looking  at  the  first  commercially  operated  fusion  plant?*   In  my  understanding,  thermonuclear  fusion  commercial  reactor  stands  little  chance  of  realization.     According  to  the  project  of  International  Thermonuclear  Fusion  Experimental  Reactor  (ITER),  fusion   experiment  will  begin  in  2018  and  operation  period  is  expected  to  last  20  years.  Following  DEMO   reactor  is  planed  to  put  into  the  grid  as  early  as  2040.  However,  nobody  knows  physics  of  thermo   nuclear  fusion  plasma  and  how  to  control  it  in  the  large  facility.    Based  on  my  experience  on  nuclear   fusion  experiment,  the  hurdle  is  very  high.    It  must  be  set  the  project  back.  Even  if  the  physics  is   realized,  nuclear  fusion  method  confronts  to  other  commercial  plants  which  have  economic  benefit.  In   addition  to  this,  it  is  doubtful  if  any  country  needs  such  large  amount  of  electricity.     *What  method  of  confinement  is  most  likely  to  prevail  in  commercial  fusion?*   One  of  the  most  important  requirements  for  commercial  reactor  is  a  stable  operation.  Otherwise   electric  companies  and  customers  do  not  accept  the  installation.    It  is  difficult  that  the  continuous   operation  of  thermo  nuclear  fusion  reaction  by  the  magnetic  confinement  system.  On  the  other  hand,   laser  implosion  system  will  be  operated  with  the  pulse  drive.  Such  a  large  pulse  driving  system  seems   to  me  unstable.  Furthermore,  if  the  technology  becomes  regulated  in  terms  of  nuclear  nonproliferation,   the  introduction  speed  will  slow  down.     *Could  a  child  born  today  be  seeing  'free'  energy  in  his/her  lifetime?*   Children  may  realize  solar  power  is  the  source  of  real  'free'  energy.     *Is  'cold'  fusion  believed  to  be  scientifically  feasible?*   There  is  big  difference  between  scientific  and  commercial  feasibilities.  Scientifically  it  has  a  potential   but  may  not  become  a  commercial  big  power  supply.       *What  is  the  best  way  we  have  for  obtaining  naturally  occurring  elemental  hydrogen?*   We  can  get  hydrogen  by  the  electrolysis  using  renewable  energy.       *How  many  fusion  plants  would  we  need  to  supply  the  energy  needs  of  the  planet?*   You  can  get  total  electrical  power  plant  capacity  when  you  divide  the  world  electricity  demand  by  a   capacity  of  one  nuclear  fusion  reactor.  However,  we  have  to  consider  the  daily  load  curve  and  net   system  energy  demand.  Since  it  is  too  difficult  to  control  the  output  of  nuclear  fusion  reactor,  it  may  be   only  used  for  the  base  load.  Nuclear  fusion  commercial  reactor  has  difficulties  to  find  a  position  as  base   load  power  source  because  of  existence  of  other  safe  and  cheap  supplies.   *How  aware  would  you  say  the  public  are  of  nuclear  fusion?  *   I  have  no  idea.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 45. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     *What  are  the  most  effective  ways  of  educating  them?*   The  education  of  historical  survey  of  science,  technology  and  society  that  don't  contain  value  judgments     *Are  there  any  possible  disaster  scenarios  that  could  result  from  misuse  of  a  fusion  reaction?*   If  the  energy  use  succeeds,  it  brings  unnecessary  electricity  demand  and  radioactive  waste  management   problem.  In  addition  to  these,  it  cause  nuclear  proliferation  problem  about  H-­‐bomb.     *Are  there  any  other  hypothetical  power  sources  that  could  surpass  fusion  in  our  far  future?*   Hydrogen  energy  created  by  renewable  energies     Conclusion       It  seems  a  cliché,  but  for  decades  we  have  been  “just  decades  away”  from   commercially  applied  fusion  .  In  spite  of  this,  fusion  has  advanced  in  leaps  and   bounds.    Though  we  have  not  yet  seen  any  energy  gains,  the  ongoing  trend  is  of  our   reactors  moving  closer  to  breakeven  point.  The  main  problem  is  the  time  that  it  has   taken  to  do  this.  Most  people  agree  that  we  are  going  to  see  breakeven,  but  when  is  the   point  of  contention.  Most  media  sources  are  quoting  a  commercial  start  date  of  at   least  2040.   However,  the  timescale  to  fusion  power  could  be  accelerated  with  increased   funding.  Overall  research  spend  on  fusion  is  tiny  –  less  than  0.1%  of  the  total  energy   market  worldwide.  This  is  astonishingly  small  compared  to  what  a  large  hi-­‐tech  or   automotive  firm  would  spend  on  research  (e.g  Toshiba,  Ford).  ITER’s  expected   lifetime  cost  is  less  than  the  amount  being  spent  on  the  London  Olympics.   source  –  Culham  Centre  For  Nuclear  Fusion     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 46. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Diagram  showing  advancements  in  fusion  technology  performance  compared  with   Moore’s  Law  and  Particle  Energy  Accelerators.     Note:  Fusion  performance  (quantified  by  the  triple  product  of  the  Lawson  Criterion  -­‐   density,  temperature  and  energy  confinement  time)  doubles  every  1.8  years,  at  a  slightly   higher  rate  than  Moore’s  law.  Considering  the  commercial  and  societal  implications  of   Moore’s  law,  once  fusion  becomes  commercially  viable,  technological  acceleration  at  this   rate  could  have  a  huge  effect  on  society.  For  example,  transistor  advancement  over  the   last  15  years  has  seen  the  computer  industry  move  at  amazing  speed.  This  suggests  that   this  kind  of  exponential  growth  in  fusion  would  result  in  a  similar  scenario.   Research  in  magnetic  confinement  fusion  energy  over  the  past  50  years  has  made   tremendous  progress  with  the  Lawson parameter  (nτET)  in  magnetic  fusion  devices   increasing  by  10  million  to  within  a  factor  of  10  of  that  needed  for  large  scale  fusion   power  production.     The  next  major  step  in  magnetic  confinement  fusion  is  to  be  taken  by  ITER  with  the   production  of  ∼500MW  of  fusion  power  for  ∼400s.       Similarly,  inertial  confinement  fusion  has  made  impressive  progress  with  the  increase   in  laser  driver  power  by  1  million,  and  the  completion  of  a  major  facility,  NIF,  aimed  to   produce  ignition  of  small  DT  pellets  and  20–40  MJ  of  energy  per  pulse.       The  overall  highlights  can  be  summarized:   (Meade  2010):   •  A  strong  scientific  basis  has  been  established  for  proceeding  to  the  next  stage,  fusion   energy  production,  in  the  development  of  magnetic  and  inertial  fusion.     •  Diagnostics  and  plasma  technology  (auxiliary  plasma  heating,  current  drive,  pellet   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 47. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   injection  and  plasma  facing  components)  have  made  enormous  progress  and  have   facilitated  a  deeper  understanding  of  the  physics,  thereby  enabling  progress.     •  There  are  several  promising  paths  to  both  magnetic  and  inertial  fusion  energy  and,   each  is  working  on  optimization  and  sustainment  (or  increased  repetition  rate).     •  Temperatures  (>100  million  ◦C)  needed  for  fusion  have  been  achieved  in  many   facilities.     •  Confinement  needed  for  fusion  is  being  approached  in  the  laboratory.     •  Complex  fusion  systems  have  been  operated  reliably  at  large  scale.     •  Fusion  systems  using  fusion  fuel  (DT)  have  operated  safely.     •  The  international  fusion  programme  is  on  the  threshold  of  energy  producing   plasmas  in  both  magnetic  and  inertial  fusion.     The  next  50  years  of  fusion  research…   The  stage  is  now  set  for  the  international  fusion  programme  to  begin  planning  for  the   step  to  a  fusion  demonstration  facility  (DEMO  -­‐  designed  to  produce  2000-­‐4000MW  of   power!).      Source:  Dale  Meade  -­‐  50  Years  Of  Fusion  Research    -­‐ http://iopscience.iop.org/0029-­‐5515/50/1/014004     Even  NASA  is  currently  looking  into  developing  small-­‐scale  fusion  reactors  for   powering  deep-­‐space  rockets.  Fusion  propulsion  would  boast  an  unlimited  fuel   supply  (hydrogen),  would  be  more  efficient  and  would  ultimately  lead  to  faster   rockets.       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 48. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Diagram  detailing  past  and  predicted  milestones  in  DT  fusion  research.  Note  the  Q   value  for  the  cyan  line  which  represents  the  JET  test  in  1997                     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 49. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     ITER  (International  Thermonuclear   Experimental  Reactor)       • Vacuum vessel - holds the plasma and keeps the reaction chamber in a vacuum • Neutral beam injector (ion cyclotron system) - injects particle beams from the accelerator into the plasma to help heat the plasma to critical temperature • Magnetic field coils (poloidal, toroidal) - super-conducting magnets that confine, shape and contain the plasma using magnetic fields • Transformers/Central solenoid - supply electricity to the magnetic field coils • Cooling equipment (crostat, cryopump) - cools the magnets • Blanket modules - made of lithium; absorb heat and high-energy neutrons from the fusion reaction • Divertors - exhaust the helium products of the fusion reaction     ITER Main Parameters Total  Fusion  Power  (MW)   500     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 50. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Machine  Height  (m)   26     Machine  Diameter  (m)   29   Plasma  Volume  (m 3)   837     In  Latin,  Iter  translates  to  The  Way.  The  ITER  project  is  now  seen  as  the  way  to  fusion,   and  is  the  next  big  step  for  magnetic  confinement.     • ITER  is  a  tokamak  fusion  experimental  reactor  with  superconducting  magnets   and  other  systems  that  will  enable  the  facility  of  generating  500  megawatts  of   fusion  power  continuously  for  at  least  400  seconds!  Its  plasma  volume  will  be   close  to  the  size  of  future  commercial  reactors.     • ITER  is  the  world’s    biggest  energy  research  project.  It  is  an  example  of   international  scientific  collaboration  on  an  unprecedented  scale  that  will   provide  the  link  between  plasma  physics,  engineering  and  future  commercial   fusion-­‐based  power  plants.     • The  reactor  is  expected  to  take  10  years  to  build  with  completion  scheduled  for   2018.  ITER  is  designed  to  produce  approximately  500  MW  of  fusion  power   sustained  for  up  to  1,000  seconds  (compared  to  JET's  peak  of  16  MW  for  less   than  a  second)     • ITER  will  demonstrate  and  refine  key  technologies,  as  well  as  generate  ten   times  more  power  than  is  required  to  produce  and  heat  the  initial  hydrogen-­‐ tritium  plasma.     • The  Seven  international  Parties  that  are  co-­‐operating  to  develop  ITER  are:   China,  EU,  India,  Japan,  Russia,  South  Korea,  and  the  United  States.  The   negotiations  take  place  under  the  auspices  of  the  International  Atomic   Energy  Agency  (IAEA).     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 51. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     The ITER site is located in the south of France in Cadarache, not quite one hour to the north of Marseille. Source: www.iter.org  |  ITER  Organization           Note:  http://www.iter.org/mach/Pages/Tokamak.aspx  provides  a  more  detailed  and   interactive  description  of  the  components  and  workings  within  ITER.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 52. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0       ITER  will  be  constructed  from  many  separate  parts  produced  from  many  contractors.  Its   production  schedule  is  a  meticulously  planned  and  co  ordinated  international  effort.       ITER’s  predicted  performance  as  compared  to  previous  reactors.  Note  how  far  away  it  is   from  the  rest  of  the  reactors;  The  scale  is  logarithmic!       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 53. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     ITER’s  predicted  energy  output  will  dwarf  any  previous  fusion  project.                   APPENDIX  I:  SCIENTIFIC  INDEX   i.  What  is  a  fusion  reaction?   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 54. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Fusing  elements  releases  enormous  amounts  of  energy     Nuclear  fusion  is  the  process  by  which  multiple  atomic  nuclei  join  together  to  form  a   single  heavier  nucleus.  It  is  accompanied  by  the  release  or  absorption  of  energy.    At   short  distances  the  attractive  nuclear  force  is  stronger  than  the  repulsive  electrostatic   force.  As  such,  the  main  technical  difficulty  for  fusion  is  getting  the  nuclei  close  enough   to  fuse.     The  Sun  can  sustain  its  fusion  reactions  in  part  because  it  is  so  large  that  heat  is   conducted  away  slowly.  To  create  a  practical  fusion  reactor,  we  must  compensate  for   size  by  using  good  insulation  to  prevent  rapid  heat  conduction.     When  do  nuclear  fusion  reactions  occur  in  a  plasma?  They  can  only  occur  when  the   temperature  is  very  high,  many  millions  of  degrees.  The  reason  is  that  the  repulsion   which  always  exists  between  the  positive  electric  charges  of  colliding  nuclei  has  to  be   overcome  by  attractive  nuclear  forces.  This  can  only  happen  when  nuclei  with  high   mutual  velocity  come  within  the  grasp  of  the  strong  but  short-­‐range  (1013  cm)   nuclear  forces,  which  occurs  only  for  enormously  high  plasma  temperatures  about   200  million  degrees  for  deuterium-­‐tritium  reactions.   We  can  characterize  the  fusion  power  (the  rate  of  heat  production)  in  terms  of  the   plasma  pressure,  since  higher  pressure  allows  more  plasma  density,  and  more  density   means  more  fusion  power   We  characterize  the  effectiveness  of  the  magnetic  insulation  in  terms  of  the  “energy   confinement  time,”  which  is  simply  the  time  that  would  be  required  for  the  plasma  to   cool  off  if  all  heating  ceased(by  convention,  it  is  the  time  required  for  the  temperature   to  drop  to  about  one-­‐third  its  original  value).  We  can  characterize  the  fusion  power   (the  rate  of  heat  production)  in  terms  of  the  plasma  pressure,  since  higher  pressure   allows  more  plasma  density,  and  more  density  means  more  fusion  power   The  pressure  rule  says  that  the  more  current  we  have,  the  higher  the  plasma  pressure   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 55. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   we  can  achieve.  The  limit  on  the  pressure  is  simply  proportional  to  the  square  of  the   magnetic  field  strength.  Doubling  the  field  allows  four  times  the  pressure.   While it is possible to take any two nuclei and get them to fuse, it is easiest to get lighter nuclei to fuse, because they are less highly charged, and therefore have less repulsive force. The probability that two nuclei fuse is determined by the physics of the collision, and a property called the "cross section" which (roughly speaking) measures the likelihood of a fusion reaction. A simple analogy for cross-section is to consider a blindfolded person throwing a dart randomly towards a dartboard on a wall. The likelihood that the dart hits the target depends on the cross-sectional area of the target facing the dart-thrower. ii.  What  is  a  plasma?     Lightning  is  a  plasma  that  exists  naturally  on  the  earth.  Plasma  temperatures  in   lightning  can  approach  ~28,000  K!     There  are  many  varieties  of  plasma,  however  they  all  have  one  main  thing  in  common,   which  is  called  ionization.  This  means  that  within  the  plasma  itself,  some  electrons   have  been  released  from  atoms  they  used  to  be  bound  to  .  It  is  these  free  electrons  that   makes  a  plasma  respond  so  well  to  electromagnetic  fields.     In  a  fusion  reactor  At  150  million  K  the  "fuel"  exists  as  a  plasma.     The  American  scientist  Irving  Langmuir  pioneered  the  field  of  plasma  physics.  He   discovered  that  oscillations,  so-­‐called  plasma  oscillations,  could  occur  in  a  plasma  at  a   particular  frequency,  he  also  introduced  the  term  'plasma'  and  was  awarded  the  Nobel   prize  for  chemistry  in  1932.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 56. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Plasma  is  the  fourth  state  of  matter   Plasma    as  a  state  of  matter  can  be  shown  in  the  diagram  below.   Solid  (least  energetic)  >  liquid  >  gas  >  plasma  (most  energetic)     The  quark  gluon  soup  at  the  beginning  of  the  universe,  superheated  and  super   compressed  would  have  been  classified  as  a  plasma.     iii.    THE  LAWSON  CRITERION   Self-­‐sustained  fusion  (ignition)  requires  the  fusion  triple  product  of  density,  energy   confinement  time  and  temperature  to  be  greater  than  a  certain  value:   nτET  >  5  ×  1015  (cm3  s  keV).     This  is  the  value  that  relates  to  Q  =  1  in  the  fusion  energy  gain  factor,  and  is  also   known  as  breakeven.     It  does  not  matter  whether  we  achieve  this  criterion  by  having  a  very  large   confinement  time  (excellent  insulation)  or  a  very  high  pressure,  or  any  combination  of   the  two.  The  number  obtained  by  multiplying  the  pressure  and  the  time  is  all  that   matters.       Problems  with  Energy  Loss  through  radiation   The  Lawson  criterion  depends  only  on  heat  loss  via  conduction,  the  direct   transmission  of  heat  between  objects  that  are  touching  each  other,  such  as  you   experience  if  you  grasp  an  object  hotter  than  your  hand.  Plasmas  do  conduct  heat  to   their  surroundings,  and  it  is  this  conduction  process  that  magnetic  fields  suppress   throughout  the  plasma  volume.  But  like  all  hot  objects,  plasmas  also  emit  radiant  heat,   on  which  the  magnetic  field  has  no  effect.  For  fusion  plasmas,  heat  is  radiated  in  the   form  of  x-­‐rays,  because  the  temperature  is  so  high.     Heat  loss  by  x-­‐ray  radiation,  being  a  consequence  of  collisions  of  electrons  and  ions,  is   unavoidable,  as  is  additional  energy  loss  via  the  microwave  radiation  created  by   electron  motion  in  a  magnetic  field,  though  most  of  the  microwaves  would  be  reflected   from  the  vessel  walls  and  reabsorbed  by  the  plasma.       However  the  main  problem  is  to  concentrate  on  heat  loss  by  conduction,  which  has   proved  a  far  more  important  obstacle  to  achieving  ignition  in  tokamaks  than  is   radiation.     iv.  Lorentz'  Law       Hendrik  Lorentz's  law  describes  the  motion  of  charged  particles,  such  as  those  moving   within  a  magnetic  field.    It  is  useful  as  it  helps  us  visualize  how  the  phenomenon   works.     The  Lorentz  law  says  that  I  must  measure  all  three  quantities;  the  electric  field,  the   magnetic  field,  and  the  particle  velocity  from  the  same  vantage  point,  or  “reference   frame.”  This  is  because  all  three  quantities  would  appear  to  be  different  if  my   equipment  and  I  were  mounted  on  a  cart  moving  through  the  room.  For  example  if  the   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 57. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   cart  could  move  as  fast  as  the  charged  particle,  I  would  find  no  magnetic  for  on  the   particle,  since  it  would  appear  to  be  at  rest  if  I  moved  beside  it.  But  now  I  would   measure  a  stronger  electric  field  to  compensate  for  the  missing  magnetic  force.  In   other  words,  electric  and  magnetic  fields  are  one  and  the  same  thing,   interchangeable  depending  on  the  state  of  motion  of  the  observer     v.  The  Principle  of  Magnetic  Confinement   Diagram  showing  how  magnetic  confinement  affects  the  paths  of  electrons  in  an  a  3d   field.   Confinement  refers  to  all  the  conditions  necessary  to  keep  a  plasma  dense  and  hot   long  enough  to  undergo  fusion:  the  remarkable  property  of  magnetic  fields  is  essential   to  fusion  plasma  confinement;  Free  motion  of  charged  particles  in  the  plasma  is  not   allowed  in  directions  transverse  to  the  magnetic  field.  Instead,  the  particles  will  spiral   around  the  magnetic  field  lines.  In  this  way,  we  use  magnetic  field  lines  to  control  the   shape  of  the  plasma.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 58. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Trajectory  of  an  ion,  ‘trapped’  in  a  magnetic  field     The  starting  point  is  to  find  a  state  of  equilibrium,  in  which  all  forces  are  balanced.   Otherwise,  the  plasma  would  collapse  straightaway,  like  a  badly  designed  building.  A   plasma  in  the  vicinity  of  a  magnetic  field  always  produces  a  current,  and  this  is  the   electromagnetic  mechanism  we  can  use  to  control  the  plasma.  The  loss  of  particles   and  heat  in  all  channels  must  be  sufficiently  slow,  as  these  cause  a  slow  leakage  of   energy  from  plasma  and  degradation  over  time.         The  plasma  must  be  shaped  in  such  a  way  that  small  deviations  are  restored  to  the   initial  state.  If  we  do  not  achieve  this,  instabilities  will  occur  and  grow  exponentially   until  the  plasma  is  destroyed  (it  literally  falls  apart).  This  is  the  mechanism  that  also   makes  fusion  so  safe.  Unless  it  is  under  control,  it  cannot  remain  as  plasma.     Understanding magnetic fields Let  us  take  a  metaphor;  compare  the  electrons  with  cars  which  move  on  a  road  at  a   certain  speed  with  a  certain  distance  between  them.  For  some  reason  one  of  the  cars   brakes.  To  avoid  collisions  the  following  cars  will  also  brake,  and  so  on,  until  the  first   car  decides  to  recover  its  earlier  speed  followed  by  the  others.  The  processes  may  be   repeated.  Along  the  line  of  traffic  there  will  be  a  bunching  of  cars  accompanied  by  a   depletion  of  the  density  of  cars.  Motions  of  this  character,  longitudinal  oscillations  and   waves,  occur  frequently  in  plasmas  as  in  mechanical  systems.  The  accompanying   electric  oscillating  fields  are  obviously  in  the  direction  of  the  motion.     Maintaining  a  stable  “pinched”  plasma  in  a  magnetic  field  is  very  difficult  at  best.    If  a   solid  vessel  is  used  to  maintain  the  plasma  and  the  plasma  comes  into  contact  with  the   vessel  wall,  then  the  plasma  will  immediately  transfer  heat  to  the  vessel  and  cool  off  to   below  the  required  fusion  temperatures.    Likewise,  the  chance  of  the  solid  vessel   vaporizing  when  coming  into  physical  contact  with  the  plasma  is  extremely  high.   Plasma  tends  to  “stick”  to  magnetic  field  lines.  Even  if  the  plasma  does  stick  to  field  line   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 59. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   it  would  leak  away  rapidly  un-­‐  less  the  field  lines  themselves  remain  inside  the   superheated  environment.  Therefore  we  must  confine      The  thinning  of  the    magnetic  field  lines  indicates  a  weakening  of  the  field  on  the   outside.  This  is  where  a  “blowout”  might  occur.  In  a  blowout,  the  stability  of  the   plasma  fluid  ruptures.  This  destabilizes  the  plasma,  and  could  cause  collapse  of  the   structure.       For  a  real  life  metaphor  for  this,  think  of  the  surface  of  a  large  soap  bubble.  If  pierced   with  a  sharp  pin,  its  surface  is  broken  and  the  delicate  fluid  collapses  under  the   pressure  of  the  surrounding  environment.   A  weakness  building  up  in  fluid,  causing  it  to  deform.   APPENDIX  II:  ELEMENTS  AND  ISOTOPES   INVOLVED  IN  NUCLEAR  FUSION   • Hydrogen (p): Ordinary hydrogen is everywhere, especially in water. • Deuterium (D): A heavy isotope of hydrogen (has a neutron in addition to the proton). Occurs naturally at 1 part in 6000; i.e. for every 6000 ordinary hydrogen atoms in water, etc., there’s one D. • Tritium (T): Tritium is another isotope of hydrogen, with two neutrons and a proton. T is unstable (radioactive), and decays into Helium-3 with a half-life of 12.3 years. (Half the T decays every 12.3 years.) Because of its short half-life, tritium is almost never found in nature (natural T is mostly a consequence of cosmic-ray bombardment). Supplies have been manufactured using fission reactors; world Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 60. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   tritium reserves are estimated at a few kilograms. Tritium can also be made by exposing deuterium or lithium to neutrons. • Helium-3 (He3): Rare light isotope of helium; two protons and a neutron. Stable. There’s roughly 13 He-3 atoms per 10 million He-4 atoms. He-3 is relatively abundant on the surface of the moon; this is believed to be due to particles streaming onto the moon from the solar wind. He3 can also be made from decaying tritium. • Helium-4 (He4): Common isotope of helium. Trace component of the atmosphere (about 1 part per million?); also found as a component of "natural gas" in gas wells. • Lithium-6 (Li6): Less common isotope of lithium. 3 protons, 3 neutrons. There are 8 Li-6 atoms for every 100 Li-7 atoms. Widely distributed in minerals and seawater. Very active chemically. • Lithium-7 (Li7): Common isotope of lithium. 3 protons, 4 neutrons. See above info on abundance. • Boron (B): Common form is B-11 (80%). B-10 20%. 5 protons, 6 neutrons. Also abundant on earth. -­‐http://abob.libs.uga.edu/bobk/caseof.html    (Kobres  1994)   APPENDIX  III:  An  Annotated  list  of  Fusion   Reactions  Among  Various  Light  Elements   Note: D = deuterium, T = tritium, p = proton, n = neutron; D+D -> T (1.01 MeV) + p (3.02 MeV) (50%) • > He3 (0.82 MeV) + n (2.45 MeV) (50%) <- most abundant fuel • > He4 + about 20 MeV of gamma rays (about 0.0001%; depends somewhat on temperature.) • (most other low-probability branches are omitted below) D+T -> He4 (3.5 MeV) + n (14.1 MeV) <-easiest to achieve D+He3 -> He4 (3.6 MeV) + p (14.7 MeV) <-easiest aneutronic reaction T+T -> He4 + 2n + 11.3 MeV He3+T -> He4 + p + n + 12.1 MeV (51%) • > He4 (4.8) + D (9.5) (43%) • > He4 (0.5) + n (1.9) + p (11.9) (6%) <- via He5 decay p+Li6 -> He4 (1.7) + He3 (2.3) <- another aneutronic reaction p+Li7 -> 2 He4 + 17.3 MeV (20%) • > Be7 + n -1.6 MeV (80%) <- endothermic, not good. D+Li6 -> 2He4 + 22.4 MeV <- also aneutronic, but you get D-D reactions too. p+B11 -> 3 He4 + 8.7 MeV <- harder to do, but more energy than p+Li6 n+Li6 -> He4 (2.1) + T (2.7) <- this can convert n’s to T’s n+Li7 -> He4 + T + n - some energy -­‐http://abob.libs.uga.edu/bobk/caseof.html    (Kobres  1994)   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 61. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   APPENDIX  IV:  Financial  Data  on  Fusion   Research  and  Development  Funding   “I  have  long  felt  that  an  investment  by  the  Department  of  Energy  of  a  million  dollars  a   year  for  the  next  30  years  would  pay  a  higher  return  than  any  other  investment  this   country  could  ever  make.  “   Wilson  Greatbatch    -­‐       Information on fusion funding in the UK and USA is very transparent, Europe’s funding is somewhat more complicated and was harder to come by. I was not able to obtain data for Japan and the rest of the world. USA  Funding   USA  funding  information  Source:  Steve  Dean  @  Fusion  Power  Associates  |   http://aries.ucsd.edu/FPA/OFESbudget.shtml           Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 62. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 63. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     2  Graphs  showing  the  US  fusion  budget  from  start  of  research  to  current  date   Note:  MFE  =  Magnetic  Fusion  Energy    IFE  =  Inertial  Fusion  Energy     Deflator  =  adjusts  the  dollar  value  of  the  year  in  which  spent  to  today's  dollar  value   using  the  cost  of  living  index   UK  Funding   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 64. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     “Figures for the Government funding of nuclear fusion research in the UK are available from financial year 1974/75 and are given as follows. The Engineering and Physical Sciences Research Council (EPSRC) took over the responsibility for funding the fusion programme in 2003/04 and its subsequent funding is also provided.   EURATOM also fund fusion research in the UK through the United Kingdom Atomic Energy Authority. The UK contributes indirectly to the EURATOM European fusion research programme through its payments to the EU budget. UK figures include UK funding of JET (which is about 13% of the total cost of JET). While most of the UK funding is for Culham including JET in later years the figures have included EPSRC funding for fusion-related research in UK universities.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 65. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   European  Funding   Generally speaking could say that until recently typical total spend in Europe has been nearly 500 MEuro per year, of which about 40% is by EURATOM (effectively, via the European Union) and 60% is by national governments (note Switzerland, not in the EU, is included). Note that it is not that EURATOM funds some activities, and the Governments others; rather all activities are part-funded by both (for example, the UK programme is funded about 20% by EURATOM and 80% by the UK Government via EPSRC; whereas JET is funded approx 75% by EURATOM, 13% by the UK and 12% by other European countries).    However, the EURATOM figure has now doubled to provide Europe's share of ITER construction and may need to rise further.   Overall it used to be said that around 1B$ per year, or perhaps a little over, was spent on fusion R&D, but it must be much more now (approaching 2B$?) due to ITER construction.   Funding  in  the  rest  of  the  World   Spend in other countries is relatively small. Historically Japan spend a little less than the US.” Europe  and  UK  funding  Source:  Martin  O’Brien,  Fusion Programme Manager, Culham Centre for Fusion Energy www.ccfe.ac.uk, Interview conducted via email.   (O'Brien  2010)                         Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 66. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   APPENDIX  V:  Recommended  and   Educational    Resources     http://www.ted.com/talks/steven_cowley_fusion_is_energy_s_future.html   -­‐  TED  Talk  with  a  summary  on  the  benefits  and  progress  in  fusion  so  far.   http://focusfusion.org/       -­‐  The  Focus  Fusion  Society’s  website.   http://www.iter.org/default.aspx     -­‐  ITER’s  website    www.fusion.org.uk/     -­‐  Culham  Centre  For  Fusion  Energy   http://video.google.com/videoplay?docid=1996321846673788606     "Should  Google  Go  Nuclear?  Clean,  cheap,  nuclear  power  (no,  really)"  -­‐  Google  tech   talk  on  fusion  with  Dr.  Bussard  –  fusion  pioneer  and  designer  of  the  Bussard  Ramjet   engine.  |  http://www.askmar.com/Fusion.html  -­‐  summary,  transcript  and  additional   information  on  Bussard’s  tech  talk.   http://fusedweb.llnl.gov/sites.html       -­‐  Online  fusion  educational  resource,  continually  updated  by  the  Lawrence  Livermore   National  Laboratory  and    the  Princeton  Plasma  Physics  Laboratory   http://www.cnic.jp/english/     -­‐  Citizen’s  Nuclear  Information  Centre  –  A  Japanese  public  information  site  on   emerging  nuclear  technologies.    http://www.efda.org/multimedia/     -­‐The  educational  portion  European  Fusion  Development  Agency’s  website.  Contains  a   variety  of  learning  resources  including  books,  online  movies  and  DVD.       APPENDIX  VI:  Errata   Extremely  useful  materials  that  had  to  be  included  here,  somehow..     Two  very  well  designed  and  communicative  posters  on  fusion.   Note:  use  high  zoom  value  in  your  word  processor  to  see  full  details  on  these  posters.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 67. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   F usion Fusion To make reactions power the sun and other stars. In fusion reactions, low- mass nuclei combine, or fuse, to fusion happen on the earth, atoms must be heated to very high temperatures, typically above 10 mil- form more massive nuclei. The fusion process converts mass (m) into kinetic energy (E), as described by lion K. In this high- temperature state, the atoms are ionized, forming a plasma. For net energy gain, the Einstein's formula, E = mc2. In the sun, a sequence of fusion reactions named the p- p chain begins with plasma must be held together (confined) long enough that many fusion reactions occur. If fusion power protons, the nuclei of ordinary hydrogen, and ends with alpha particles, the nuclei of helium atoms. The plants become practical, they would provide a virtually inexhaustible energy supply because of the abun- p- p chain provides most of the sun’s energy, and it will continue to do so for billions of years. dance of fuels like deuterium. Substantial progress towards this goal has been made. ENERGY SOURCES & CONVERSIONS A N O VERVIE W O F E N ERG Y C O N VERSI O N PR O CESSES Physics of a Fundamental Energy Source PLASMAS – THE 4 th STATE OF MATTER C H A R A C T E R I S TI C S O F T Y P I C A L P L A S M A S Energy can take on many forms, and various processes convert one form into another. While Plasmas consist of freely moving charged p articles, i.e., electrons and ions. Formed at high tempera- total energy always remains the same, most conversion processes reduce useful energy. tures when electrons are stripped from neutral atoms, plasmas are common in nature. For instance, stars are predominantly plasma. Plasmas are a “Fourth State of M atter” because of their unique physi- Sources Conversion Useful Energy cal properties, distinct from solids, liquids and g ases. Plasma densities and temperatures vary widely. Chemical, Useful Eout = & Ein Mechanical Magnetic Inertial Gravitational, & = thermodynamic confinement Electrical Nuclear , efficiency; 10- 40% 10 8 fusion reactor fusion Solar, etc. is typical. Thermal Waste Waste Materials Energy Nebula Solar core Temperature (K) Solar 10 6 corona Physical Parameters of Energy-Releasing Reactions Lightning Reaction Type: Chemical Fission Fusion Solar wind Neon sign Sample Reaction C + O2 1n + 235U D (2H) + T (3H) # CO2 #143Ba + 91Kr + 21n # 4He + 1n Interstellar space Fluorescent light Solids, 10 4 liquids, Typical Inputs Coal UO2 (3% 235U Deuterium Aurora Flames and gases. (to Po wer Plant) and Air + 97% 238U) and Lithium Too cool and dense for classical Typical Temp. (K) 1000 1000 100,000,000 plasmas to exist. Energy Released TWO IMPORTANT FUSION PROCESSES 10 2 per kg Fuel (J / kg) 3.3 x 107 2.1 x 1012 3.4 x 1014 10 3 10 9 10 15 10 21 10 27 10 33 D + T # 4 H e + 1n “p-p”: S O LAR FUSI O N C H AI N Number Density (Charged Particles / m 3 ) For first generation fusion reactors p $ e- % Reactants Fusion Products D e+ % p HOW FUSION REACTIONS WORK 20 keV 4 He % N U CLEAR PHYSICS O F FUSI O N D 3.5 MeV p 3 He 4 He ACHIEVING FUSION CONDITIONS p EXPERIME N TAL RESULTS I N FUSI O N RESEARC H Fusion of low-mass elements releases energy, as does fission of high-mass elements. Binding Energy per Nucleon as a Function of Nuclear Mass p p Both inertial and magnetic confinement fusion research have focused on understanding plasma confinement and heating. This research has led to increases in plasma temperature, T, density, n, 3 He and energy confinement time, !. Future power plants based on fusion reactors are expected to Per Nucleon (MeV) p er n ucleo n ( M eV) 10 10 T 20 keV 14.1 MeV n 6 Be produce about 1 GW of power, with plasmas having n! ' 2 x 1020 m- 3 s and T ' 120 million K. Binding Energy Bin din g Ener g y 1 2C 8 4He 62 Ni e+ % p 6 Fusion Fission 1 eV = 1.6022 x 10-19 J. Average particle p % 1021 Confinement Quality, n ! (m -3 s) e- 16O 4 Li 3He 5 Reactions Reactions thermal kinetic energy is 1 eV per 11,600 K. D $ % 2 Release Release T D Energy Energy 0 0 Expected reactor regime 0 10 20 1 50 100 150 200 1020 CREATING THE CONDITIONS FOR FUSION N u cle a r M a ss ( u ) N uclear M ass (u) 1990s Low-Mass Elements Only N uclear Reaction Ener g y: (E = k (m i -m f ) c 2 PL A S M A C O N FI N E M E N T A N D H E ATI N G From Einstein’s E = m c2. (E = energy change per reaction; mi = total initial 1019 1980s Confinement: Gravity Magnetic Fields Inertia (reactant) mass; mf = total final (product) mass. The conversion factor k is 1 in SI Tok ama k Laser Beam-Driven Fusion units, or 931.466 MeV/uc2 when E is in MeV and m is in atomic mass units, u. Fusion requires Star Formation Plasma Tok ama k Laser-Beam Driven Fusion high tempera- 1975-80 Useful Nuclear Masses Fusion Rate Coefficients ture plasmas 1018 (The electron’s mass is 0.000549 u.) 10 –20 Magnetic Rate Coefficient, R (m 3 / s) confined long Label Species M ass (u*) enough at high 1970-75 D + T Inertial density to n (1n) neutron 1.008665 10 –24 release appre- 1017 p (1H) proton 1.007276 ciable energy. D (2H) deuteron 2.013553 10 –28 10 6 10 7 10 8 109 T (3H) triton 3.015500 10 –46 p + p <- - - - - - - - - Size: 1019 m- - - - - - - - - - > <- - - - - - - - - - Size: 10 m - - - - - - - - - - > <- - - - - - - - - - - - Size:10- 1 m - - - - - - - - - - - - > Ion Temperature (K) 3He helium- 3 3.014932 Typical Scales: Plasma Duration: 1015 - 1018 s Plasma Duration: 10- 2 to 106 s Plasma Duration: 10- 9 to 10- 7 s " (4He) Prim a r y p rocess in our sun helium- 4 4.001506 10 –50 Copyright © 2000 Contemporary Physics Education Project (CPEP) – CPEPweb.org * 1 u = 1.66054 x 10- 27 kg = 931.466 MeV/c2 10 7 10 8 10 9 10 10 Heating • Compression • Electromagnetic Waves • Compression CPEP is a non- profit organization of teachers, physicists, and educators, with substantial student involvement. Corporate and T ion (K) Mechanisms: • Fusion Product Energy • Ohmic Heating (electricity) (Implosion driven by laser private donations as well as national laboratory funding have been and remain crucial to the success of this project. Plasm a Fusion Reaction Rate Density = R n 1 n 2 • Neutral Beam Injection or ion beams, or by x rays This chart was created by CPEP with support from the following organizations: the AIP journal Physics of Plasmas, the Division (beams of atomic hydrogen) from laser or ion beams) of Plasma Physics of the APS, General Atomics, Lawrence Livermore National Laboratory, Massachusetts Institute of Technology, n1,n2 = densities of reacting species (ions/m3); R = Rate Coefficient (m3/s). • Compression • Fusion Product Energy Princeton Plasma Physics Laboratory, the University of Rochester Laboratory for Laser Energetics, and the U.S. Department of Multiply by (E to get the fusion power density. • Fusion Product Energy Energy, Office of Fusion Energy Sciences. Images courtesy of NASA, the National Solar Observatory, and Steve Albers as well as the organizations listed above. CPEP Charts are distributed by Science Kit and Boreal Laboratories (1- 800- 828- 7777).   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 68. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Fusion Energy FUSION = SUN on earth Cleaner energy for the future Nuclear fusion is the energy source of the Sun and the stars. Scientists and engineers over the Safety & Environment 1 Safety & Environment 2 whole world are working together to learn how to use nuclear fusion on earth. A fusion power plant will work just like a gas heater. At each instant there will be a limited amount of fuel, enough for a few seconds, In the fusion process itself no radioactive waste is produced. The metallic components of the plant itself will however in time become radioactive. By choosing appropriate present in the reactor vessel. If the fuel supply is closed, the fusion materials the level of radioactivity should decrease quickly, so that after about 100 If successful, fusion energy can help fulfill the world´s energy needs in a more sustainable way. process stops, and therefore the reaction can never run out of hand. years, it is expected that the material can be recycled, or stored relatively easily. 3 microwaves Status of Fusion Research Fusion research is carried out by people all over the world. The One method of heating the plasma largest fusion experiment in the world is the Joint European Torus is by using microwaves, just as (JET) 3 in England. JET is still too small to be used as a power What is fusion? Fusion is the energy source of the Sun Fusion on earth in a microwave oven. plant. Small things cool down faster than large things (think of soup in a spoon and soup in a bowl), and if a fusion reactor is too small then Fusion is the process that powers In the centre of the Sun, 600 billion kilograms of hydrogen fuse every second, forming On earth we want to use fusion as the energy needed to keep it warm is more than the energy which is the Sun and the stars. It is the helium. This releases an enormous amount of energy, of which a small part sustains an energy source because it is safe, released in the fusion reactions. reaction in which two atomic nuclei life on Earth. environmentally responsible plasma Today, the international fusion community is getting ready to take the combine, or fuse, to form a heavier The temperature in the centre of the Sun is 15 million degrees Celsius. At high – fusion releases no greenhouse The plasma in tokamaks next important step: the ITER project (see below). atom. When light atoms such as temperatures, the atoms in a gas lose their electrons, and together they form a gas of gases that affect the climate – and 1 can be ten times hotter than 3 hydrogen fuse, a lot of energy is charged particles called a plasma. The Sun is a plasma, and so is a bolt of lightning or there is abundant fuel available for the centre of the Sun. Safety & Environment released. Fusion is the opposite of the gas in a fluorescent light bulb. everyone on earth to produce nuclear fission, where heavy energy for millions of years. atoms are split into smaller pieces. Fusion produces no harmful substances and no Atomic nuclei repel each other due to their positive charge. For nuclei 2 greenhouse gases that affect the climate. deuterium helium to overcome the repulsive forces Fusion Tokamak and fuse, they need to collide at a Two light atomic nuclei, Ring-shaped reactor vessel very high velocity, which means deuterium and tritium, fuse for nuclear fusion on earth. that fusion only occurs at very high together and form a helium temperature. nucleus, a neutron, and a lot of energy. electricity proton neutron 4 tritium cooling water steam turbines transformer Safety & Environment 4 The ITER project The next step in fusion research is the large international ITER reactor vesssel human Tritium is a radioactive substance, but because it is produced inside the plant (from lithium) project. Together, the European Union, Japan, India, China, Russia, approximately 10 m high height 1.85 m and is also used there, the transport of tritium outside the plant is limited. Strict safety South-Korea and the United States want to show that fusion works measures and confinement structures will ensure that the tritium stays inside the plant. and that it can produce energy on a large scale. ITER will be twice as large as JET and is designed to produce 500 MW of energy – ten Operation of a fusion plant 2,2 % Today´s sources times as much as that needed to keep the fusion process going. ITER will be built in Cadarache, in the South of France. In a future fusion power plant, the fusion fuels deuterium and tritium are heated As they are not contained by the magnetic field, the hydropower The construction of ITER 4 will take ten years neutron 6,5 % and should be finished around 2016. If ITER is to a temperature of 150 million degrees using a variety of methods. One high-speed neutrons are released during the fusion process nuclear a success, a demonstration fusion power plant method uses microwaves, like those used to heat up food. The resulting hot fly into the wall of the vessel. In a future fusion power plant, fission can be built. Energy is important Fusion fuel plasma is contained in a ring-shaped vessel. To make sure that the hot plasma does not touch the walls (otherwise the plasma would cool down too much) a they would transfer their energy to a coolant and convert lithium into tritium. Outside of the reactor the warm coolant For almost everything we do and use – driving a car, heating, cooking, TV, music, traveling, telephone, clean water – we To use fusion on earth as an energy source, a special mixture of gases is heated to an Magnets strong magnetic field is produced in the vessel 1 . The plasma particles would be used to make steam, with which electricity can be extremely high temperature. When the gas is hot enough, fusion takes place. The gas Strong magnets ensure that the hot plasma follow the magnetic field and travel continuously around and around in circles, produced (or for example hydrogen) 2 . need energy. If we want to continue to live the way we do now, then we must ensure that we have enough energy for the mixture (this is the fuel of the fusion reactor, just like petrol in a car) is made up of two sorts of hydrogen: deuterium and tritium. does not touch the wall but that it continuously travels around and around in the vessel. 200 % for literally tens of thousands of kilometers, without touching a wall. Such a A mix of vessel with magnetic field coils is called a tokamak. future. Deuterium is present in seawater, tritium can be made from lithium (a metal which is widely available). Lithium is also used in lithium batteries, which provide electricity for laptops and 0,416 % geothermal 10,6 % biomass, CO2-free mobile telephones. One litre of water contains 33 mg of deuterium. This produces the same amount of energy as 360 litres of petrol (when you fuse it with 50 mg of tritium). waste energy There is enough fusion fuel in the world for millions of years of energy production. We use more 1650 kg * 3000 kg oil/year We must protect Oil, coal and gas 21,2 % gas In 100 years our entire energy production must be CO2 free. 1 litre sea water 5 grams of lithium-ore 1 barrel = 159 litres and more oil/year per person our environment are running out 0,051 % wind There is no single solution to achieve this. We must use all per person 9 billion energy 6 billion people Almost 80% of our energy is produced by burning coal, oil and Oil, gas and coal are formed from prehistoric plants and animals that available sun, energy wind, sources: hydropower, In 50 years time there will be people gas (fossil fuels). This also lived on earth about 300 to 400 24,5 % biomass, geothermal energy, 9 billion people on earth releases CO2, a greenhouse gas. million years ago. We are deplet- coal nuclear fission, fossil fuels compared to the current Greenhouse gases change our ing fossil fuels much faster than with CO2 sequestration and population of 6 billion. All climate, resulting in more dramatic they were formed. If we continue nuclear fusion. This is the only those extra people will also 100 % weather patterns like storms, using oil, gas and coal as we do at 0,039 % way to ensure that there will sun be enough energy available need energy. Furthermore, hurricanes and droughts. If the present, we will run into severe 34,5 % countries like China and India temperature on earth rises too shortages during this century. 0,0005 % oil * for everyone. are developing rapidly. The quickly, plants and animals can The oil will become much more tidal result will be that in 2050 the become extinct. If we do not want expensive and we will become global population will use this to happen we will need to more and more dependent on the 80 % twice as much energy as 2002 2050 stop emitting CO2. import of energy from other coun- fossil fuels they do at present. tries. * sources of primary energy in the 33 mg of deuterium 50 mg of tritium 360 litres of petrol year 2003, source IEA Energy Statistics total energy usage expressed in kilogrammes oil-equivalent * This poster was developed by Verdult - Kennis in Beeld (www.kennisinbeeld.nl) and was This publication, made possible by the financial support of the European Commission, was produced within the framework of the European Fusion Development Agreement (EFDA). The EFDA-partners are the European Com- Nothing in this publication may be reproduced and/or made public by means of printing, offset, photocopy or microfilm or in any digital, commissioned by the FOM-Institute for Plasma Physics Rijnhuizen (www.fusie-energie.nl, mission and the parties associated with the European fusion program. Neither the Commission, nor the associated parties or anyone representing them, can be held responsible for damage that results from the information in this electronic, optical or any other form without the prior written permission of FOM-Rijnhuizen and Verdult – Kennis in beeld. www.rijnh.nl) and EFDA (www.efda.org). See also www.iter.org. publication. The opinions expressed are not necessarily those of the European Commission. Verdult - New Media Design. Copyright © 2005 FOM-Rijnhuizen/Verdult - Kennis in Beeld, the Netherlands. All rights reserved.   First  Poster  Credit:  FusEdWeb  |  Fusion  Energy  Education  |  http://fusedweb.llnl.gov/       Second  Poster  Credit:    EFDA  |   http://www.efda.org/multimedia/posters_educational.htm                             Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 69. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0                       The  ITER  platform  in  Cadarache.  This  is  the  site  of  the  future  reactor,  and  is  obviously  a   work  in  progress!       Acknowledgements:   I  would  like  to  acknowledge  the  tireless  work  of  the  researchers,  engineers,  theoreticians   and   science   communicators   advancing   our   understanding   of   and   spreading   the   public   awareness  in  fusion.  May  they  achieve  all  the  funding  they  could  ever  need...     I  would  like  to  thank  the  following  people  in  person.       Chris   Warrick   and   Martin   O’Brien   from   Culham.   Both   where   very   patient   with   my   pestering  emails  answering  questions  and  summoning  up  no  end  of  statistics  and  figures   for  me.   Tadahiro   Katsuta,   for   taking   the   time   to   answer   my   questions   articulately   even   though   English  is  not  his  first  language     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 70. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   T   Kenneth   Fowler,   author   of   The   Fusion   Quest,   who   has   kindly   allowed   me   to   use   sections   of   his   book   in   the   scientific   appendix.   I   recommend   his   book   as   an   excellent   resource  for  understanding  the  technical  and  theoretical  aspects  of  Nuclear  fusion.  It  is   semi   technical,   and   although   slightly   dated,   explains   many   concepts   in   fusion   in   very   understandable  terminology.             References    2005.  Horizon:  An  Experiment  to  Save  the  World.     Andreani,  R.,  2000.  What  is  lacking  in  order  to  design  and  build  a  commercially  viable  fusion  reactor?  Nuclear  Fusion,  40(6),  1033-­‐ 1046.     Castillo,  F.,  1990.  The  international  physicians  for  the  prevention  of  nuclear  war:  Transnational  midwife  of  world  peace.  Medicine,   Conflict  and  Survival,  6(4),  250-­‐268.     Focus  Fusion  Society,  Heat  and  Thermal  Pollution.  focusfusion.org.  Available  at:   http://focusfusion.org/index.php/site/article/heat/  [Accessed  April  25,  2010].     Gibilisco,  S.,  2006.  Alternative  Energy  Demystified,  McGraw-­‐Hill  Professional.     Hora,  H.  &  Miley,  G.H.,  2009.  Edward  Teller  Lectures:  Lasers  and  Inertial  Fusion  Energy,  Imperial  College  Press.     Jacquinot,  J.,  2010.  Fifty  years  in  fusion  and  the  way  forward.  Nuclear  Fusion,  50(1),  014001.     Kobres,  B.,  1994.  The  case  of  carbonaceous  catastrophes:  University  of  Georgia.  Available  at:   http://abob.libs.uga.edu/bobk/caseof.html  [Accessed  April  25,  2010].     Meade,  D.,  2010.  50  years  of  fusion  research.  Nuclear  Fusion,  50(1),  014004.     Nave,  C.,  Nuclear  Fusion.  Hyperphysics  -­‐  Georgia  State  University.  Available  at:  http://hyperphysics.phy-­‐ astr.gsu.edu/HBASE/NucEne/fusion.html  [Accessed  November  7,  2009].     O'Brien,  M.,  2010.  Funding  Interview  with  Martin  O'Brien  at  Culham.     Pfalzner,  S.,  2006.  An  Introduction  to  Inertial  Confinement  Fusion,  Taylor  &  Francis.     Prades  López,  A.  et  al.,  2008.  Lay  perceptions  of  nuclear  fusion:  multiple  modes  of  understanding.  Science  and  Public  Policy,  35(2),   95-­‐105.     Sample,  I.,  2009.  Flagship  Iter  fusion  reactor  could  cost  twice  as  much  as  budgeted  |  Science  |  guardian.co.uk.  The  Guardian.   Available  at:  http://www.guardian.co.uk/science/2009/jan/29/nuclear-­‐fusion-­‐power-­‐iter-­‐funding  [Accessed  April  25,   2010].     Schwartz,  P.  &  Randall,  D.,  2003.  Wired  11.04:  How  Hydrogen  Can  Save  America.  Wired.com.  Available  at:   http://www.wired.com/wired/archive/11.04/hydrogen.html  [Accessed  November  4,  2009].     Schweber,  S.,  2008.  Einstein  and  Oppenheimer  :  the  meaning  of  genius,  Cambridge    Mass.:  Harvard  University  Press.     Smirnov,  V.,  2010.  Tokamak  foundation  in  USSR/Russia  1950–1990.  Nuclear  Fusion,  50(1),  014003.     Stefano  Atzeni  &  Jürgen  Meyer-­‐ter-­‐Vehn,  2004.  The  Physics  of  Inertial  Fusion:  Beam  Plasma  Interaction,  Hydrodynamics,  Hot  Dense   Matter,  Clarendon  Press.     Whitehouse,  D.,  2009.  BBC  News  |  SCI/TECH  |  Super  laser  advances  fusion  research.  Available  at:   http://news.bbc.co.uk/1/hi/sci/tech/1263863.stm  [Accessed  November  7,  2009].   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  • 71. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Woods,  L.C.,  2006.  Theory  of  Tokamak  Transport:  New  Aspects  for  Nuclear  Fusion  Reactor  Design,  Wiley  VCH.     Yim,  M.,  2003.  Effects  of  education  on  nuclear  risk  perception  and  attitude:  Theory.  Progress  in  Nuclear  Energy,  42(2),  221-­‐235.         Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com