Your SlideShare is downloading. ×
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  

.∞§             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




Why	
  fusion...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
           caused...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
           Cherno...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
from	
  solar	
  ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



    	
  
    Fusion	
 ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



    	
  
    produced	...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



    	
  




         ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
results	
  now!	
...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
	
  
SOLUTION:	
 ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
disappear,	
  whi...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
A	
  cooling	
  p...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
In	
  simple	
  t...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
elements	
  are	
...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
finished	
  five	...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
During the final ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
laser	
  are	
  b...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
       •   Relati...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
the	
  ohmically	...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
In	
  order	
  to...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
Diagram	
  showin...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
Robert	
  W.	
  B...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  




             ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  



Conclusion	
  ...
Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0



	
  
However,	
  it	
 ...
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0
Upcoming SlideShare
Loading in...5
×

Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0

4,112

Published on

A non scientific report on emerging renewable energy prospects, focusing on nuclear fusion and the benefits it has as an energy source. Contains relevent statistics and interviews with industry experts, including some explanations behind the science of fusion.

Published in: Technology
1 Comment
1 Like
Statistics
Notes
  • Hi Jack,
    thanks for posting this comprehensive summary on SlideShare. In particular, I like the section on designing an effective communications strategy. I will raise this with the volunteers on the FocusFusion.org crowd funding campaign. We're trying to break the 'decades away' mantra by demonstrating break even with a beryllium electrode in the next 12-18 months.
       Reply 
    Are you sure you want to  Yes  No
    Your message goes here
No Downloads
Views
Total Views
4,112
On Slideshare
0
From Embeds
0
Number of Embeds
1
Actions
Shares
0
Downloads
106
Comments
1
Likes
1
Embeds 0
No embeds

No notes for slide

Transcript of "Jack Oughton - A Layman's Guide To Nuclear Fusion v1.0"

  1. 1. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   .∞§ §∞. Part 1: Why Fusion? Humanity’s Growing Resource Problem Part 2: Fusion – A Primer Part 3: Fusion Energy Cycles Part 4: Fusion Confinement Devices Part 5: Public Awareness Of Fusion Part 6: Conclusion Part 7: Appendixes “But if you wanted to know what the perfect energy source is? The perfect energy source is one that doesn't take up much space, has a virtually inexhaustible supply, is safe, doesn't put any carbon into the atmosphere, doesn't leave any long lived radioactive waste, it's fusion. But there is a catch. Of course there is always a catch in these cases. Fusion is very hard to do. We've been trying for 50 years. .. And we have 30 million years worth of fusion fuel in sea water..” – Prof. Steven Cowley – Director of the United Kingdom Atomic Energy Authority's Culham Laboratory - Source: TED Talks http://www.ted.com/talks/steven_cowley_fusion_is_energy_s_future.html   Introduction:       This   project   is   intended   as   a   primer   on   nuclear   fusion   and   is   written   in   mostly   non-­‐ technical   language   for   the   non   scientific   reader.   It   is   a   research   project   on   the   applications  of      nuclear  fusion  as  a  power  source.    This  is  a  large  area  of  science,  but  I   have   done   my   best   to   condense   the   large   amount   of   available   information   into   an   easily  understandable  format.      As  a  research  document  this  work  is  compiled  from  a  variety  of  sources,  adding  my   own  commentary  in  the  context  of  this  work.  Though  much  of  this  is  my  own  work,  I   make  no  assumptions  or  claims  to  any  of  it  –  I  have  credited  the  authors  whenever  I   have  used  information  they  have  provided     I  will  not  discuss  the  application  of  fusion  in  weaponry.  The  world  has  seen  the  effects   of  this  already  and  there  is  ample  information  on  it.     This  document  is  not  intended  to  discuss  the  entire  field  in  great  detail,  which  is   far   beyond   the   scope   of   a   short   document   like   this.   It   is   instead   a   carefully   arranged,   ordered   primer   and   a   signpost.     Ample   links   provide   further   roads   for   the   intrigued   reader   to   explore   fusion   on   his   own   terms.   There   is   far   more   coherent   information   than  I  could  reasonably  express,  or  fit  in  to  the  document.     On  another  note,  I  am  not  a  fusion  scientist,  simply  a  very  interested  undergraduate.    I   have  done  my  best,  but  have  probably  made  mistakes,  I  acknowledge  this.     I  hope  that  you  find  this  information  both  useful  and  informative.  The  energy  shortfall   and   pollution   problems   are   huge   hurdles   to   human   progress.   The   realisation   of   commercially  viable  fusion  presents  a  very  real  solution.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  2. 2. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Why  fusion?  Humanity’s  worsening   resource  problem   In grossly simple terms, there are two problems quickly becoming apparent that effect modern civilization. These problems are: 1) Increasing energy costs due to limited availability of fuels with finite deposits. 2) Increasing pollution due to increased economic development and global energy usage Both problems clearly derive from the our reliance upon, and the burning of fossil fuels, which are finite, cause atmospheric pollution and in some areas are unable to be obtained in quantities fully able to satisfy demand. In 2007, the world consumed an estimated 531 exajoules of energy [one exajoule, [denoted as EJ], is 10 exponential 18 joules]. This is equivalent to the energy released by detonating about 9.73 million A-bombs. Sources: EIA:  www.eia.doe.gov/   BP:  www.bp.com/         World  Energy  Shortfall  Predictions  –     Note:  prediction  around  2050  of  a  beginning  of  a  shortfall.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  3. 3. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Even  an  ‘acceptable’  release  of  C02  is  double  the  amount  the  world  faced  before  fossil   fuels  became  widely  used  in  industry!     Modern  man  consumes  around  35  times  the  amount  of  yearly  energy  of  primitive,  pre-­‐ agricultural  man.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  4. 4. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     World  Energy  Consumption  2006  by  Fuel  Type  [Sources:  BP,  EIA]   Note:  In  2006  around  86%  of  our  energy  came  from  fossil  sources.     Evolution  of  World  Total  Fuel  Consumption  by  type   Note:  energy  usage  roughly  doubles  between  1972  and  2005.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  5. 5. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     World  Energy  Use  and  Reserves  circa  2001  –  Source:  WEA   Note:  in  2001  renewables  comprised  less  than  14%  of  our  energy  supply.       UN  Predicted  world  growth  1950-­‐2050.  Note  that  the  scale  is  logarithmic  and   the  population  value  is  given  in  millions!  -­‐  Source  data  calculated  from:   http://esa.un.org/unpp/     According  to  the  U.S.  Energy  Information  Administration  (EIA),  the  demand  for   global  energy  is  projected  to  grow  44%  between  2005  and  2030.  This  will  be   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  6. 6. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   caused  by  a  number  of  factors,  such  as  continuing  economic  growth  and   increasing  populations  in  developing  countries.       -­‐  Source:  http://www.eia.doe.gov/oiaf/ieo/highlights.html     This  same  report  also  stated  that  China  is  the  largest  consumer  of  the  world’s   coal  supply,  and  since  2000  it’s  coal  usage  has  doubled.  Given  the  country’s   expanding  economy,  and  large  coal  reserves,  China’s  demand  for  coal  is   expected  to  remain  strong.  In  the  reference  case,  world  coal  usage  grows  by  2%   every  year,  between  2005  and  2030,  with  coal’s  share  of  the  world’s  total  needs   reaching  29%  by  2030.    Two  of  the  main  consumers  of  energy  will  be  China  and   India,  as  they  are  both  developing  very  quickly  and  have  very  large   populations.  In  1990  both  the  countries  where  consuming  on  average,  10%  of   the  world’s  total  energy  expenditure,  but  in  2006  their  combined  share  had   grown  to  19%.  It  is  expected  that  with  continued  strong  economic  growth,   both  countries  will  increase  their  energy  consumption  twofold,  making  up   28%  of  total  world  consumption  by  2030.      Fission  reactors  have  been  suggested  as  an  alternative  to  this  problem.  But   nuclear  fission  power  has  its  own  problems.  Licensing  and  building  reactors   take  a  very  long  time.  If  the  fuel  were  used  directly  (non-­‐breeder  reactors),  the   finite  Uranium  sources  would  limit  the  available  operation  in  a  relative  short   time  (several  decades).  Going  to  breeder  reactors  can  greatly  extend  this  time,   breeder  reactors  can  utilize  more  abundant  Thorium  in  fission,  and  consume   Uranium  at  a  slower  rate.  However,  these  reactors  produce  Plutonium,  which  is   very,  very  dangerous.  Concerns  about  the  safety  of  nuclear  fission  reactors   include  the  possibility  of  radiation-­‐releasing  nuclear  accidents,  the  problems  of   radioactive  waste  disposal,  and  the  possibility  of  contributing  to  nuclear   weapon  proliferation.  Spent  fuel  elements  contain  plutonium-­‐239.  This   plutonium  could  be  separated  chemically  and  diverted  to  nuclear  weapons   production.           Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  7. 7. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Remaining  oil  reserves  by  source.   Over  38%  is  unrecoverable.       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  8. 8. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Chernobyl  Nuclear  Power  Plant,  reactor  4–  site  of  the  April  1986  disaster  and   along  with  Three  Mile  Island  in  the  USA,  a  significant  reason  why  nuclear   fission’s  reputation  amongst  the  lay  public  (at  least  in  the  USA)  retains  a   negative  stain.  (Yim  2003)         Decay  timeline  of  fission  biproducts.     Note:  the  immense  amounts  of  time  taken  for  radioactivity  to  decay  to  0.         Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  9. 9. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Diagram  comparing  radiotoxocity  of  materials  in  various  fission  and  fusion  reactors.     Note  two  points.     1.    The  extremely  steep  decline  in  fusion  radiotoxicity  relative  to  fission  radiotoxicity.   Fusion  reactors  have  much  shorter  radioactive  half  lives    than  fission  reactors   2.    A  fusion  reactor  with  a  vanadium  alloy  is  no  more  radioactive  than  coal  plant  ashes   after  around  50  years.   Renewables   Renewable  energy  sources  are  an  excellent  alternative  to  finite  and  polluting  fuels,   being  sustainable  and  a  lot  more  environmentally  friendly.  However  on  average  they   do  not  provide  energy  as  cheaply  as  fission  or  other  finite  resources.  Furthermore,  they   are  not  always  suitable  in  many  locations.  For  example,  geothermal  plants  can  only  be   sighted  in  areas  where  geological  conditions  allow  for  subterranean  heat  to  be   accessed.  Solar  panels  are  not  as  effective  in  countries  which  receive  on  average,  less   sunlight,  and  wind  farms,  obviously  require  a  significant  amount  of  wind.     It  should  be  emphasized  that  all  alternative  methods  of  generation  of  electricity  on   Earth,  wind  energy,  wave  energy  from  the  sea,  solar  radiation  converted  by  solar  cells,   etc,  are  all  indirectly  derived  from  the  energy  emitted  by  the  Sun,  i.e.  they  originate   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  10. 10. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   from  solar  fusion.  Even  the  atmosphere,  the  rivers  and  the  forests  providing  other   energy  alternatives  for  electric  power  are  driven  by  heat  and  light  from  solar  fusion.     Great  efforts  will  be  needed  to  achieve  the  sustainable  energy  surplus  we  require  in   the  time  we  have  available,  before  other  options  begin  to  run  down.       -­‐Source:  Met  Office  Hadley  –  Datasets  |   http://hadobs.metoffice.com/hadcrut3/diagnostics/global/nh+sh/     Environmentally  speaking,  I  believe  it  would  be  prudent  to  hedge  our  bets  in  regards   to  climate  change,  as  the  many  of  the  predictions  brought  about  by  climate  change   could  be  disastrous  if  they  turn  out  to  be  accurate.    One  must  remember  that  a   reduction  in  atmospheric  CO2  levels  would  take  many  years  even  if  emissions  were   drastically  reduced  today.  Economically  speaking;  we  require  the  economic   infrastructure  in  place  to  make  up  the  shortfall  that  a  combination  of  increased   consumption  and  declining  fossil  stocks  will  present  in  the  coming  decades.       Energy  is  undoubtedly  the  food  of  civilization.  With  enough  cheap  and  clean  energy,   we  can  produce  unlimited  clean  drinking  water  from  desalinating  the  oceans,  grow   almost  unlimited  food  in  the  desert,  and  reverse  environmental  damage  through   terraforming.  We  can  easily  power  the  technological,  electronic  systems  that  are  so   essential  in  both  our  personal  lives,  and  to  society  as  a  whole.  With  planning  we  can   live  in  a  world  where  our  needs  are  met,  and  not  at  the  expense  of  the  environment.   The  path  to  an  infinitely  abundant  energy  source?  Nuclear  Fusion.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  11. 11. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Fusion  –  a  primer  on  possibly  the  world’s   most  useful  energy  source   It  may  almost  seem  too  good  to  be  true,  but  fusion  has  a  number  of  properties  that,   technological  challenges  aside,  make  it  the  most  promising  energy  source  yet.     Plasma  being  channelled  in  a  fusion  torus   Fusion  –  The  Benefits     SAFE   • If  there  is  an  accident  and  the  magnetic  containment  is  breached,  the  reaction   immediately  stops!  The  metallic  walls  of  the  vessel  surrounding  the  plasma  would   cool  the  expanding  plasma  in  a  short  period,  collapsing  the  reaction  cleanly  and   quickly.     • A  fusion  reactor  is  like  a  gas  burner  –  the  fuel  which  is  injected  into  the  system  is   burnt  off.  There  is  very  little  fuel  in  the  reaction  chamber  at  any  given  moment  (about   1g  in  a  volume  of  1000  m3)  and  if  the  fuel  supply  is  interrupted,  the  reactions  only   continue  for  a  few  seconds.  Any  malfunction  of  the  device  would  cause  the  reactor  to   cool  and  the  reactions  would  stop.       • These  instabilities  in  the  plasma  act  as  an  inherent  safety  mechanism.  A  fusion  reactor   cannot  melt  down  like  a  conventional  nuclear  reactor,  it  simply  degrades  to  gas     • Though  fusion  is  the  main  energy  source  of  hydrogen  bombs,  fusion  alone  has  never   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  12. 12. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   produced  a  bomb;  the  hydrogen  bomb  requires  a  fission-­‐  based  atomic  bomb  to  set  it   off.    This  uncontrolled  fusion  reaction  used  in  a  bomb  is  a  completely  different   mechanism  to  the  controlled  fusion  which  is  utilized  in  peaceful  fusion.     • Day-­‐to-­‐day-­‐operation  of  a  fusion  power  station  would  not  require  the  transport  of   radio-­‐active  materials       •    There  are  no  byproducts  that  could  be  adapted  for  military  purposes.       CLEAN  AND  ABUNDANT   • No  carbon  emissions  are  generated  by  fusion.     • The  raw  fuels  are  abundant  and  equally  distributed  around  the  globe.  This  prevents   geopolitical  and  economic  issues  such  as  countries  gaining  political  advantages  from   the  scarcity  of  the  resource     •  It  also  prevents  economic  inequalities.  Fusion’s  raw  materials  are  available  to  all.     • Raw  materials  for  hydrogen  will  last  for  millions  of  years.  They  are  a  type  (isotope)  of   hydrogen  –  deuterium  (found  in  seawater)  –  and  lithium  (a  light  metal  which  is  found   in  the  Earth’s  crust  and  in  seawater).  The  lithium  in  the  fusion  reactor  wall  produces   tritium  (another  isotope  of  hydrogen)     • The  waste  product  from  a  deuterium-­‐tritium  fusion  reactor  is  ordinary  (and  harmless)   helium.    There  are  no  complicated  nuclear  byproducts  and  therefore  no  nuclear   reprocessing,  or  complicated  fuel  cycling  is  required.     • Although  radioactive  materials  will  be  generated  in  the  walls  of  a  fusion  power  plant   they  would  decay  with  half-­‐lives  of  about  10  years  and  the  whole  plant  could  be  re-­‐ cycled  within  100  years.  There  is  no  long-­‐lasting  radioactive  waste  to  burden  future   generations.   EFFICIENT   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  13. 13. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     The  oceans  offer  us  an  effectively  limitless  source  of  Deutirium.   • Fusion  is  a  very  efficient  form  of  energy  production.  1  kg  of  deuterium  and  tritium   would  supply  the  same  amount  of  energy  as  10  million  kg  of  coal.       • The  fuel  consumption  of  a  fusion  power  station  will  be  extremely  low.  A  1  GW  fusion   plant  will  need  about  100  kg  of  deuterium  and  3  tons  of  natural  lithium  to  operate  for   a  whole  year,  generating  about  7  billion  kWh.     • The  lithium  in  one  laptop  battery  plus  the  deuterium  from  half  a  bathtub  of  water   would  provide  the  UK’s  per  capita  electricity  production  for  30  years.   Source  -­‐    Culham  Centre  For  Fusion  Energy-­‐  fusion.org.uk/fusion_energy.pdf     Fusion  –  The  Drawbacks   Though  I  argue  that  fusion  is  extremely  promising,  it  would  not  be  balanced  for  me  to   leave  out  the  shortcomings  of  nuclear  fusion.   As  an  energy  source,  fusion  has  very  few  fundamental  shortcomings.  The  main   problem  with  fusion  today  is  that,  technologically  it  is  still  beyond  our  grasp.  Though   great  advancements  have  been  made,  most  expert  sources  believe  that  commercially   viable  fusion  is  many  decades  away.  And  at  the  current  rate  of  funding,  this  will   remain  to  be  a  problem…     PROBLEM:  Escalating  research  costs     Many  countries  perceive  fusion  funding  as  a  research  risk.  Essentially  it  is   seen  to  have  a  huge  possible  payoff  in  the  far  future,  and  the  timescales   involved  are  too  long.  The  energy  problem  is  pressing  and  we  need   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  14. 14. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   results  now!  Other  renewable  energy  sources  compete  with  fusion  for   finite  R&D  funding.  Sadly,  many  green  energy  advocates  have  yet  to  catch   on.  Many  commentators,  particularly  those  greens  who  have  fought  long   campaigns  against  nuclear  fission,  are  deeply  suspicious  of  fusion.  They   doubt  fusion  will  deliver  and  believe  the  money  earmarked  for  research   would  be  better  spent  on  renewables,  such  as  wind,  wave  and  solar   energy.  Many  of  these  other  resources  are  already  in  commercial  use,   which  makes  them  perceived  as  a  more  credible  source  of  funding.           “The  ITER  fusion  reactor  was  originally  costed  at  €10bn  (£9bn),  but  the  rising  price  of   raw  materials  and  changes  to  the  initial  design  are  likely  to  see  that  bill  soar,  officials   confirmed  today.   The  warning  came  as  scientists  gathered  in  Finland  to  unveil  the  first  component  of  the   reactor,  which  will  effectively  act  as  its  exhaust  pipe.  The  reactor  is  expected  to  take   nearly  10  years  to  build  and  is  scheduled  to  be  switched  on  in  2018.   It  began  as  a  US-­‐Russian  project  in  the  1980s,  but  has  since  grown  to  include  the  EU,   China,  India,  Japan  and  South  Korea.”  (Sample  2009)  –  Ian  Sample,  The  Guardian   SOURCE  -­‐  http://www.guardian.co.uk/science/2009/jan/29/nuclear-­‐fusion-­‐power-­‐ iter-­‐funding   SOLUTION:  CONSIDER  THE  ALERNATIVES!     There  is  no  ‘real’  solution  to  this.  However,  there  is  an  alternative  way  to  consider  the   issue.   1.  Fusion  may  be  expensive  but,  how  expensive  would  it  be  to  transfer  most  of   humanity  away  from  low-­‐laying  coastal  areas,  assuming  that  global  warming  raises   sea  levels  over  the  next  100  years?   2.  Fusion  should  be  considered  an  investment.  Simple  economics  suggests  that  the   growing  scarcity  of  fossil  fuels  will  result  in  rising  prices  to  provide  power  from  these   sources  over  time,  assuming  they  become  harder  to  source  and  extract.   Extending  this  idea  further,  the  raw  materials  of  fusion;  deuterium  and  tritium  are   abundant  enough  to  be  practically  considered  infinite.  As  technology  improves,  costs   of  extracting  deuterium  and  lithium  and  converting  them  to  energy  should  fall.   Eventually  we  could  see  fusion  to  be  a  source  of  extremely  cheap  power:  no  scarcity,   massively  efficient  energy  transfer.   3.  Commercial  fusion  reactors  greatly  outperform  other  renewable  energy  sources.   PROBLEM:  Net  Energy  Gain   In  experimental  fusion  reactors  the  main  goal  is  to  achieve  a  net  energy  gain.   Essentially,  we  want  to  generate  more  power  from  the  fusion  reactions  within  reactor   than  we  put  in  to  start  and  maintain  those  reactions.  At  the  moment,  incredible   amounts  of  energy  are  expended  to  create  the  conditions  for  fusion  to  occur,  and  as  of   yet,  no  reactor  has  yet  produced  a  gain.  Running  a  nuclear  fusion  reactor  costs  more   energy  than  it  generates.  At  the  moment,  a  fusion  reactor  expends  energy.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  15. 15. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     SOLUTION:  Continue  research!     Reactor  energy  efficiency  has  increased  every  decade  since  fusion  research   began(Andreani  2000).     In  fusion  research,  achieving  a  fusion  energy  gain  factor  Q  =  1  is  called  breakeven,   and  is  the  current  goal  in  fusion  research.  With  every  year  the  value  of  Q  that  we     obtain  climbs  closer  to  1.  In  a  commercial  fusion  reactor,  a  value  around  Q  =  20  would   be  more  suitable.  Some  external  power  will    be  required  for  things  that  help  us   regulate  the  plasma,  such  as  like  current  drive,  refueling,  profile  control,  and  burn   control.         Encouragingly,  in  1997  The  JET  tokamak  at  Culham  in  the  UK  produced  16  MW  of   fusion  power  –  which  is  the  current  world  record  for  fusion  power.     The  interior  of  the  JET  torus.   PROBLEM:  Heat/  Thermal  Pollution     An  unusual  yet  still  valid  argument  against  freely  available  cheap  energy  is  a   phenomenon  known  as  heat  pollution.    The  idea  is  that  with  cheap  abundant  energy,   most  will  be  wasted  as  heat.  This  can  have  detrimental  effects  on  marine  life.   Thermal  Pollution’s  Implications  For  Marine  Ecosystems   Thermal  pollution  can  have  a  great  influence  on  the  aquatic  ecosystem.       There  are  various  effects  on  the  biology  of  the  ecosystems  when  heated  effluents   reach  the  receiving  waters.  The  species  that  are  intolerant  to  warm  conditions  may   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  16. 16. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   disappear,  while  others,  rare  in  unheated  water,  may  thrive  so  that  the  structure  of  the   community  changes.    Respiration  and  growth  rates  may  be  changed  and  these  may   alter  the  feeding  rates  of  organisms.  The  reproduction  period  may  be  brought  forward   and  development  may  be  speeded  up.  Parasites  and  diseases  may  also  be  affected.       An  increase  of  temperature  also  means  a  decrease  in  oxygen  solubility.  Any  reduction   in  the  oxygen  concentration  of  the  water,  particularly  when  organic  pollution  is  also   present,  may  result  in  the  loss  of  sensitive  species.   For  example,  in  summer  fish  may  have  high  metabolic  rates  because  their  body   temperatures  are  elevated  in  the  warm  water.  At  the  same  time  they  are  faced  with   relatively  low  oxygen  availability  because  warm  water  holds  less  dissolved  oxygen   than  cold  water.  The  interaction  of  these  factors  may  prove  critical.      Heated  water  can  kill  animals  and  plants  that  are  accustomed  to  living  at  lower   temperatures.     -­‐  Source:  http://www.lenntech.com/aquatic/heat.htm#ixzz0drT24IFS     SOLUTION:  Ecological  Safeguards   The  technology  already  exists  to  cool  water  before  it  is  returned  to  the  ecosystem.   Heat  pollution  isn’t  really  a  problem  with  effective  planning.      The  problem  is  not   complicated  but  may  be  expensive;  redesign  of  sites  which  are  discharging  hot  water   may  be  required.  Installing  the  following  hardware  at  offending  sites  would  be  an   effective  solution  to  heat  pollution:   Cooling  ponds:  man-­‐made  bodies  of  water  designed  for  cooling  by  evaporation,   convection,  and  radiation   Cooling  towers:  which  transfer  waste  heat  to  the  atmosphere  through  evaporation   and/or  heat  transfer   Cogeneration:  a  process  where  waste  heat  is  recycled  for  domestic  and/or  industrial   heating  purposes.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  17. 17. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   A  cooling  pond  in  Novovoronezh,  Russia.  Many  such  sites  have  secondary,  recreational   purposes  that  include  fishing,  swimming,  boating,  camping  and  picnicking.  The  warm   waters  are  often  used  as  a  fish  hatchery.   PROBLEM:  Neutron  Production  in  a  DT   Fusion  Reaction   DT  fusion  reactions  produce  free  neutrons  moving  at  high  speed.  These  fast  neutrons   create   radioactivity   when   they   bombard   the   materials   of   which   the   fusion   reactor   is   constructed.  Thus,  while  the  fusion  process  does  not  produce  nuclear  waste  directly,   the   fusion   reactor   itself   does   become   radioactive,   and   its   components   must   be   disposed   of   safely   when   the   reactor   is   finally   shut   down,   after   the   normal   life   of   an   electric  power  plant.         SOLUTION:  Utilize  Unreactive  Materials  in   Reactor  Construction   Neutron  shielding  is  rather  simple.  Neutrons  are  easily  shielded  with  24  inches  or  so   of  water,  plastic,  or  anything  else  with  high  levels  of  hydrogen  to  provide  collision   partners  of  nearly  equal  mass  for  the  neutrons  to  collide  into.       The  problem  with  radioactive  materials  are  not  a  particular  hurdle.  This  problem  can   be  minimized  by  deliberately  choosing  construction  materials  that  either  produce  less   radioactivity  or  produce  radioactivity  that  dies  away  more  rapidly.  Such  materials  are   estimated  to  lose  their  radioactivity  within  50-­‐100  years,  as  oppose  to  the  thousands   of  years  required  for  fission  waste.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  18. 18. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Due  to  it’s  low  level  of  radioactive  activation  in  neutron  bombardment,  vanadium  is  a   promising  candidate  for  DT  fusion  reactors.   Part 3.   Fusion  Energy  Cycles   The  fusion  process  can  occur  in  a  number  of  different  ‘energy  cycles’.  Each  one  fuses   different  materials,  with  different  quantities  of  matter,  and  releases  energy  in  different   ways.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  19. 19. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     A  graph  comparing  the  performance  of  the  3  main  reactions;  The  Deutritium-­‐Tritium   reaction,  The  Deutirium-­‐Deutrium  process  and  the  proton-­‐Boron11  process.   Note: A Deuterium – Deuterium (DD) fusion reactor would provide limitless energy; it requires only water as a resource. However, even higher temperatures would be required for a DD reaction, it is unlikely to be considered in the near future. Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  20. 20. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Helium  3  fusion  (3He3He)  though  another  promising  aneutronic  reaction,  is  rare  on  the   earth.  Helium  3  fusion  has  been  proposed  for  confinement  in  both  magnetic  or  inertial   fusion  reactors.  This  isotope  of  helium  is  thought  to  be  common  on  the  moon!   THE  DT  FUEL  CYCLE       The  DT  Fusion  reaction.  The  release  of  the  neutron  is  the  main  drawback  of  this  power   cycle.   According  to  the  Lawson  Criterion,  the  DT  fuel  cycle  is  the  easiest  fusion  process  to   start  and  maintain  within  a  terrestrial  reactor.  It  also  has  the  highest  power   production  rate  of  the  fusion  reactions.  The  generated  power  density  is  about  1  W  per   cm3.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  21. 21. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   In  simple  terms,  the  ‘extra’  neutrons  on  the  D  and  T  nuclei  make  them  "larger"  and   less  tightly  bound,  and  the  result  is  that  the  cross-­‐section  for  the  D-­‐T  reaction  is  the   largest.  Also,  because  they  are  only  singly-­‐charged  hydrogen  isotopes,  the  electrical   repulsion  between  them  is  relatively  small.    It  is  relatively  easy  to  throw  them  at  each   other,  and  it  is  relatively  easy  to  get  them  to  collide  and  stick.  Furthermore,  the  D-­‐T   reaction  has  a  relatively  high  energy  yield.(Kobres  1994)     Disadvantages   However,  the  D-­‐T  reaction  has  the  disadvantage  that  it  releases  an  energetic  neutron.   Neutrons  can  be  difficult  to  handle,  because  they  will  "stick"  to  other  nuclei,  causing   them  to  become  radioactive,  or  causing  secondary  reactions.       ANEUTRONIC  FUSION   Aneutronic  fusion  means  fusion  that  does  not  produce  neutrons  as  a  by-­‐product.   There  are  several  candidates  for  aneutronic  fusion,  but  at  current  the  Hydrogen  and   Boron  11  cycle  seem  to  be  the  most  credible.       As  energy  equation  below  shows  -­‐  no  neutrons  are  produced,  however  this  cycle   requires  more  energy  to  start  than  the  DT  cycle.   p  +  B11  -­‐>  3  He4  +  8.7  MeV       The  pB11  cycle  is  the  most  promising  candidate  for  aneutronic  fusion.   The  nuclear  energy  from  the  p-­‐B  reaction  is  different  because  it  comes  from  the   proton-­‐  triggered  fission  of  a  light  element,  and  no  neutrons  are  released.  (Light   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  22. 22. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   elements  are  considered  to  be  those  with  a  mass  number  less  than  56,  which  is  the   mass  number  of  iron.)       This  is  unusual  for  at  least  four  reasons:     1.  Light  elements  more  often  “combine”  or  fuse  to  make  heavier  elements;  they  don’t   normally  fission  to  make  elements  that  are  lighter  yet.     2.  Heavy  elements  such  as  235U  (Uranium  isotope  –  mass  number  235)  are   traditionally  considered  to  be  the  more  likely  candidates  for  fission  reactions.     3.  Fission  reactions  are  normally  triggered  by  the  absorption  of  a  neutron,  not  a   proton.     4.  Fissions  usually  result  in  the  emission  of  neutrons.     “Focus  Fusion”  refers  to  electricity  generation  using  a  Dense  Plasma  Focus  (DPF)   nuclear  fusion  generator.  It  uses  the  aneutronic  hydrogen-­‐boron  fuel  (pB11)  cycle.   If  Focus  Fusion  reactors  are  made  to  work,  they  will  provide  virtually  unlimited   supplies  of  cheap  energy  in  an  environmentally  sound  way  -­‐  no  greenhouse  gases,  and   no  radiation  -­‐  because  the  reaction  of  pB11  is  aneutronic.       Focus  Fusion  faces  two  main  technical  challenges:     •   It  requires  much  higher  ion  temperatures  and  plasma  density-­‐confinement   time  product  than  Deuterium-­‐Tritium  fuel;     •   and  x-­‐rays  produced  by  the  reaction  reduce  temperatures.   The  plasma  focus  device  consists  of  two  cylindrical  copper  or  berillyum  electrodes   nested  inside  each  other.  The  outer  electrode  is  generally  no  more  than  6-­‐7  inches  in   diameter  and  a  foot  long.  The  electrodes  are  enclosed  in  a  vacuum  chamber  with  a  low   pressure  gas  (the  fuel  for  the  reaction)  filling  the  space  between  them.   Focus  fusion  reactors  are  expected  to  be  less  expensive  for  the  same  amount  of  power.   Using  this  power  cycle,  a  wheelbarrow  load  of  the  Boron  in  Boraxo,  a  brand  of   American  hand  soap  would  be  sufficient  to  provide  all  the  electrical  needs  of  a  small   city  for  a  year.   -­‐Sources:  http://focusfusion.org/index.php/site/article/focus_fusion_reactor/   William  W.  Flint  -­‐ http://www.polywellnuclearfusion.com/Clean_Nuclear_Fusion/Download_Book.html     MAGNETISED  TARGET  FUSION  /   SPHEROMAK  FUSION   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  23. 23. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     General  Fusion's  reactor  design  consists  of  220  pistons  that  simultaneously  ram  a  metal   sphere.  This  creates  a  shock  wave  inside  the  sphere,  so  that  plasma  rings  in  the  center   create  a  fusion  reaction. General  Fusion  plans  to  try  a  relatively  low-­‐tech  approach  to  fusion  called  magnetized   target  fusion  (MTF).   The  reactor  consists  of  a  metal  sphere  with  a  diameter  of  three  meters.  Inside  the   sphere,  a  liquid  mixture  of  lithium  and  lead  spins  to  create  a  vortex  with  a  vertical   cavity  in  the  centre.  Then,  the  researchers  inject  two  donut-­‐shaped  plasma  rings  called   spheromaks  into  the  top  and  bottom  of  the  vertical  cavity  -­‐  like  "blowing  smoke  rings   at  each  other,"  explains  Doug  Richardson,  chief  executive  of  General  Fusion,  the   Canadian  energy  company  that  is  driving  the  MTF  project.     The  last  step  is  mainly  well-­‐timed  brute  mechanical  force.  220  pneumatically   controlled  pistons  on  the  outer  surface  of  the  sphere  are  programmed  to   simultaneously  ram  the  surface  of  the  sphere  one  time  per  second.  This  force  sends  an   acoustic  wave  through  the  spinning  liquid  that  becomes  a  shock  wave  when  it  reaches   the  spheromaks  in  the  center,  triggering  a  fusion  burst.  Specifically,  the  plasma's   hydrogen  isotopes  -­‐  deuterium  and  tritium  -­‐  fuse  into  helium,  releasing  neutrons  that   are  trapped  by  the  lithium  and  lead  mixture.  The  neutrons  cause  the  liquid  to  heat  up,   and  the  heat  is  extracted  through  a  heat  exchanger.  Part  of  the  resulting  heat  is  used  to   make  steam  to  spin  a  turbine  for  power  generation,  while  the  rest  goes  back  to   recharge  the  pistons.     General  Fusion  has  just  started  developing  simulations  of  the  project,  and  hopes  to   build  a  test  reactor  and  demonstrate  net  gain  within  five  years.  If  everything  goes   according  to  plan,  they  will  then  build  a  100-­‐megawatt  prototype  reactor  to  be   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  24. 24. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   finished  five  years  after  that,  which  would  cost  an  estimated  $500  million.     Source:  Lisa  Zyga,  Physorg.com  |  http://www.physorg.com/news168623833.html INERTIAL CONFINEMENT FUSION/ INERTIAL FUSION ENERGY [IFE]   While  magnetic  confinement  seeks  to  extend  the  time  that  ions  spend  close  to  each   other  in  order  to  facilitate  fusion,  the  inertial  confinement  strategy  seeks  to  fuse  nuclei   so  fast  that  they  don't  have  time  to  move  apart     Directed  onto  a  tiny  deuterium-­‐tritium  pellet,  the  enormous  energy  influx  evaporates   the  outer  layer  of  the  pellet,  producing  energetic  collisions  that  drive  part  of  the  pellet   inward.  The  inner  core  is  increased  a  thousandfold  in  density  and  its  temperature  is   driven  upward  to  the  ignition  point  for  fusion.  Accomplishing  this  in  a  time  interval  of   10^-­‐11  to  10^-­‐9  seconds  does  not  allow  the  ions  to  move  appreciably  because  of  their   own  inertia;  hence  the  name  inertial  confinement.   Atmosphere Formation Laser beam rapidly heats the surface of the fusion target forming a surrounding plasma envelope. Compression Fuel is compressed by the rocket-like blowoff of the hot surface material. Ignition Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  25. 25. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   During the final part of the laser pulse, the fuel core reaches 20 times the density of lead and ignites at 100,000,000 degrees Celcius. Burn Thermonuclear burn spreads rapidly through the compressed fuel, yielding many times the input energy. Key: Laser  energy     Blowoff     Inward  transported  thermal  energy       The  National  Ignition  Facility  (NIF)  at  Lawrence  Livermore  Laboratory  is  exp-­‐ erimenting  with  using  laser  beams  to  induce  fusion.  In  the  NIF  device,  192  laser   beams  will  focus  on  single  point  in  a  10-­‐meter-­‐diameter  target  chamber  called  a   hohlraum.  A  hohlraum  is  "a  cavity  whose  walls  are  in  radiative  equilibrium  with  the   radiant  energy  within  the  cavity"     A  hohlraum  mock  up  to  be  used  on  the  NIF  laser   Other  effects  like  the  symmetry  of  the  implosion  are  also  important  for  the  ignition.     The  IFE  laser  must  operate  at  five  to  ten  shots  a  second  depending  on  the  target  yield   per  shot  and  the  desired  electric  output  of  the  power  plant.  Currently  two  classes  of   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  26. 26. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   laser  are  being  considered  in  the  United  States:  the  krypton-­‐fluoride  (KrF)  gas  laser   and  the  diode-­‐pumped  solid  state  laser  (DPSSL).     Like  the  magnetic-­‐confinement  fusion  reactor,  the  heat  from  inertial-­‐confinement   fusion  will  be  passed  to  a  heat  exchanger  to  make  steam  for  producing  electricity.       -­‐  Source:  Rochster  University  |   http://www.lle.rochester.edu/02_visitors/02_grad_inertialconf.php     In  the  resulting  conditions  —  a  temperature  of  more  than  100  million  degrees  Celsius   and  pressures  100  billion  times  the  Earth’s  atmosphere  —  the  fuel  core  will  ignite  and  a   thermonuclear  burn  will  quickly  spread  through  the  compressed  fuel,  releasing  ten  to   100  times  more  energy  than  the  amount  deposited  by  the  laser  beams.  Only  a  few  NIF   experiments  can  be  conducted  in  a  single  day  because  the  facility's  optical  components   need  time  to  cool  down  between  shots.  In  an  IFE  power  plant,  targets  will  be  ignited   five  to  ten  times  a  second!   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  27. 27. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     In  direct-­‐drive,  the  capsule  is  directly  irradiated  by  the  laser  beams.  In  indirect-­‐ drive,  the  capsule  is  placed  inside  a  hohlraum;  made  with  high-­‐atomic-­‐mass  materials   like  gold  and  lead  with  holes  on  the  ends  for  beam  entry.   Source:  Rick  Hodgin  -­‐  http://www.geek.com/articles/chips/national-­‐ignition-­‐facility-­‐ preps-­‐self-­‐sustaining-­‐fusion-­‐tests-­‐for-­‐2010-­‐20090415/   The  HiPER  Laser  Fusion  Reactor   HiPER  is  a  European  ICF  facility  being  designed  to  demonstrate  the  feasibility  of  laser   driven  fusion  as  a  future  energy  source.    This  is  made  feasible  by  the  advent  of  a   revolutionary  approach  to  laser-­‐driven  fusion  known  as  'Fast  Ignition'.  HiPER  will   use  a  unique  laser  configuration,  currently  estimated  at  200kJ  long  pulse  laser   combined  with  a  70kJ  short  pulse  laser.     The  HiPER  Science  Programme   It  will  also  enable  the  investigation  of  the  science  of  truly  extreme  conditions  –  creating   environments  which  cannot  be  produced  elsewhere  on  Earth  (temperatures  of  hundreds   of  millions  of  degrees,  billion  atmosphere  pressures,  and  enormous  electric  and  magnetic   fields).   The  new  research  programs  will  include  the  following  areas   • Astrophysics  in  the  laboratory     • Behavior  of  matter  in  truly  extreme  conditions       • Material  science  in  the  challenging  “warm  dense”  regime       • Nuclear  physics  and  nucleosynthesis       • Atomic  physics       • Turbulent  flow  at  very  high  Mach  numbers       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  28. 28. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   • Relativistic  particle  beam  studies  and  applications  •   plasma  physics  at  high   energy  density       • Laser  plasma  interaction  physics       • Quantum  vacuum  studies       • Fundamental  physics  in  ultra-­‐strong  electric  fields.     Artist’s  impression  of  the  HiPER  facility   The  project  was  accepted  onto  the  ‘European  Roadmap’  in  October  2006,  with  the  UK   agreeing  to  take  a  leadership  role  in  January  2007.The  HiPER  facility  is  anticipated  to   open  towards  the  end  of  the  next  decade  dependent  on  the  success  of  the   preparatory  phase  project.  The  UK  is  the  leading  contender  to  host  the  HiPER  laser   facility.   Source:  The  Hiper  project  |  http://www.hiper-­‐laser.org/keyfacts/KeyFacts.asp   Fusion  Confinement  Devices   Regardless  of  the  energy  cycle  of  nuclear  fusion  we  use,  certain  conditions  are  required   to  start  the  reaction  and  contain  the  temperamental  plasma  environment  in  which  the   atomic  process  takes  place.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  29. 29. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     Another  view  inside  the  JET  torus,  a  tokamak  design.   THE  TOKAMAK   The  Tokamak  was  first  discussed  in  the  1950s  by  Igor  Tamm  and  Andrei  Sakharov  in   the  Soviet  Union.  The  word  Tokamak  is  actually  an  acronym  derived  from  the  Russian   words  toroid-­‐kamera-­‐magnit-­‐katushka,  meaning  “the  toroidal  chamber  and   magnetic  coil.”    This  donut-­‐shaped  configuration  is  principally  characterized  by  a  large   current,  up  to  several  million  amps,  which  flows  through  the  plasma.    The  plasma  is   heated  to  temperatures  more  than  a  hundred  million  degrees  centigrade  (much   hotter  than  the  core  of  the  sun)  by  high-­‐energy  particle  beams  or  radio-­‐frequency   waves.       The  Problem  and  Importance  of  Heat  In  The  Tokamak   In  an  operating  fusion  reactor,  part  of  the  energy  generated  will  serve  to  maintain  the   plasma  temperature  as  fresh  deuterium  and  tritium  are  introduced.  However,  in  the   startup  of  a  reactor,  either  initially  or  after  a  temporary  shutdown,  the  plasma  will   have  to  be  heated  to  100  million  degrees  Celsius.     In  current  tokamak  (and  other)  magnetic  fusion  experiments,  insufficient  fusion   energy  is  produced  to  maintain  the  plasma  temperature.  Consequently,  the  devices   operate  in  short  pulses  and  the  plasma  must  be  heated  afresh  in  every  pulse.     Ohmic  Heating   Since  the  plasma  is  an  electrical  conductor,  it  is  possible  to  heat  the  plasma  by  passing   a  current  through  it;  in  fact,  the  current  that  generates  the  poloidal  field  also  heats  the   plasma.  This  is  called  ohmic  (or  resistive)  heating;  it  is  the  same  kind  of  heating  that   occurs  in  an  electric  light  bulb  or  in  an  electric  heater.     Neutral-­‐Beam  Injection   Neutral-­‐beam  injection  involves  the  introduction  of  high-­‐energy  (neutral)  atoms  into   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  30. 30. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   the  ohmically  -­‐-­‐  heated,  magnetically  -­‐-­‐  confined  plasma.  The  atoms  are  immediately   ionized  and  are  trapped  by  the  magnetic  field.  The  high-­‐energy  ions  then  transfer  part   of  their  energy  to  the  plasma  particles  in  repeated  collisions,  thus  increasing  the   plasma  temperature.     Radio-­‐frequency  Heating   In  radio-­‐frequency  heating,  high-­‐frequency  waves  are  generated  by  oscillators  outside   the  torus.  If  the  waves  have  a  particular  frequency  (or  wavelength),  their  energy  can   be  transferred  to  the  charged  particles  in  the  plasma,  which  in  turn  collide  with  other   plasma  particles,  thus  increasing  the  temperature  of  the  bulk  plasma.     The  Magnetic  Field  In  a  Tokamak   Because  of  the  electric  charges  carried  by  electrons  and  ions,  a  plasma  can  be   confined  by  a  magnetic  field.  In  the  absence  of  a  magnetic  field,  the  charged  particles   in  a  plasma  move  in  straight  lines  and  random  directions.  Since  nothing  restricts  their   motion  the  charged  particles  can  strike  the  walls  of  a  containing  vessel,  thereby   cooling  the  plasma  and  inhibiting  fusion  reactions.  But  in  a  magnetic  field,  the   particles  are  forced  to  follow  spiral  paths  about  the  field  lines.  Consequently,  the   charged  particles  in  the  high-­‐temperature  plasma  are  confined  by  the  magnetic  field   and  prevented  from  striking  the  vessel  walls.     The  flow  in  the  plasma  is  mainly  used  to  generate  the  enclosing  magnetic  field.  In   addition,  it  provides  effective  initial  heating  of  the  plasma.  The  flow  in  the  plasma  is   normally  induced  by  a  transformer  coil.       This  simplified  diagram  of  a  tokamak  describes  what  part  each  component  plays  in   confining  plasma.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  31. 31. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   In  order  to  minimize  particle  losses  caused  from  leaking  along  the  magnetic  field  lines,   the  chamber  is  bent,  which  also  bends  the  magnetic  field  lines.  This  creates  the   distinctive  torus  shape  also  known  as  a  “toroidal  pinch”.  However,  the  curvature  of  the   magnetic  field  lines  introduces  new  problems.  Strong  externally  produced  toroidal   magnetic  fields  are  necessary  to  stabilize  the  plasma.  These  are  generated  by  the   solenoidal  magnet     The  solenoid  works  by  passing  a  current  through  an  electromagnet  wrapped,  one  turn   after  the  other,  along  the  full  length  of  the  tube.  It  reduces  the  kinking  problem  in  the   plasma  by  adding  an  external  source  of  magnetic  field  that  "stiffens"  the  plasma   column.       A  solenoid  is  a  3  dimensional  coil  which  creates  the  magnetic  field  that    envelopes  the   torus.     A  tokamak  consists  mainly  of  a  toroidal  tube  big  enough  to  hold  the  plasma  that  serves   as  fuel;  a  solenoidal  magnet  wrapped  around  the  tube;  and  a  transformer  to  drive  a   current  in  the  plasma.       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  32. 32. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Diagram  showing  how  particles  are  trapped  within  the  cross  section  of  plasma   constrained  within  a  tokamak.     The  Energy  Generation  Process  Within  The  Tokamak   • The  fusion  reactor  heats  a  stream  of  deuterium  and  tritium  fuel  to  form  high-­‐ temperature  plasma.  It  squeezes  the  plasma  so  that  fusion  can  take  place.     • The  lithium  blankets  outside  the  plasma  reaction  chamber  absorb  high-­‐energy   neutrons  from  the  fusion  reaction  to  make  (‘breed’)  more  tritium  fuel.  The   blankets  will  also  get  heated  by  the  neutrons.     • The  heat  will  be  transferred  by  a  water-­‐cooling  loop  to  a  heat  exchanger  to   make  steam.     • The  steam  will  drive  electrical  turbines  to  produce  electricity.     • The  steam  will  be  condensed  back  into  water  to  absorb  more  heat  from  the   reactor  in  the  heat  exchanger.       Source:  Princton  Plasma  Physics  Laboratory  |  http://www.pppl.gov/fusion_basics/     At  this  time,  of  all  the  fusion  projects,  tokamak  confinement  is  getting  the  most   funding  and  the  most  media  attention.  There  are  2  major  new  tokamak  projects  under   construction,  ITER  in  Europe  and  SST-­‐1  in  India.  Both  are  designed  to  showcase   current  advancements  in  magnetic  confinement  technology  to  the  world,  and  to   provide  the  environment  to  research  the  next  phase  of  tokamak  technology.     THE  POLYWELL/  BUSSARD  FUSION   REACTOR     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  33. 33. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Robert  W.  Bussard  (August  11,  1928  –  October  6,  2007)  was  an  American  physicist  who   worked  primarily  in  nuclear  fusion  energy  research,  and  who  pioneered  the  polywell   concept.     The  name  polywell  is  a  portmanteau  of  "polyhedron"  and  "potential  well."    The   Polywell  is  spherical  instead  of  the  donut  shape  of  the  Tokamak.    The  polywell  method   of  achieving  fusion  has  often  been  referred  to  as  the  “long  shot  to  fusion”  and  sadly,   has  been  treated  this  way  by  the  fusion  community  at  large       As  a  fusion  source,  polywell  researchers  compete  with  tokamak  derived  technology   for  funding.  And  in  the  funding  battle,  the  polywell  is  definitely  losing,  However  in   2009  a  R&D  contract  worth  $2  million  a  year  from  the  US  Navy  was  issued,  who   believe  the  polywell  may  be  a  useful  power  source  for  ships.  This  is  promising,  and   many  polywell  advocates  have  stated  that  positive  results  can  be  seen  with  a  fraction   of  the  funding  expended  on  Tokamak  technology  (which  is  a  good  thing  because  it   looks  like  that’s  what  they  will  get!).     Source:  Federal  Business  Opportunities.gov  |   https://www.fbo.gov/index?s=opportunity&mode=form&id=fc9fd44171017393510d 46e2f8154296&tab=core&_cview=0&cck=1&au=&ck=     The  Polywell  community  is  a  small  but  vocal    ‘open  source‘  collective  of  scientific   enthusiasts  and  independent  researchers.         Confinement  Within  The  Polywell   The  Polywell  uses  inertial  electrostatic  confinement  (IEC)  to  create  the  conditions   for  fusion.         When  all  six  electromagnets  within  the  polywell  are  energized,  the  magnetic  fields   meld  into  a  nearly  perfect  sphere.  Electrons  are  injected  into  the  sphere  to  create  a   superdense  core  of  highly  negative  charge.  Given  enough  electrons,  the  electrical  field   can  be  made  strong  enough  to  induce  fusion  in  selected  particles.  Positively  charged   protons  and  boron-­‐11  ions  are  injected  into  the  sphere  and  are  quickly  accelerated   into  the  centre  of  the  electron  ball  by  its  high  negative  charge.  Protons  and  boron  ions   that  overshoot  the  centre  are  pulled  back  with  an  oscillatory  action  of  a  thousand  or   more  cycles.     Source:  R.  Colin  Johnson  |  EE  Times   http://www.eetimes.com/showArticle.jhtml?articleID=199703602       Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  34. 34. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0     The  current,  third-­‐generation  prototype  uses  six  doughnut-­‐shaped  electromagnets  to   create  a  cube  in  which  to  confine  the  fusion  reactions  in  a  strong  magnetic  field.  The   original  prototype  operated  in  air  and  was  just  centimetres  in  diameter;  the  current   design  operates  in  a  vacuum  chamber  and  measures  roughly  a  cubic  yard.       A  2D  representation  of  the  magnetic  fields  operating  in  a  polywell.  The  coils  trap   electrons  and  keep  them  in  a  very  small,  tightly  packed  group  called  a  potential  well.   This  well  attracts  and  accelerates  the  Hydrogen  and  Boron  nuclei.  When  they  collide,  the   nuclear  reaction  is  triggered.  If  there  is  a  system  failure,  the  polywell  simply  loses  its   magnetic  field  and  the  process  stops.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  35. 35. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   Conclusion   It  is  evident  that  there  are  a  great  many  different  possibilities  for  fusion;  in  both  the   choice  of  fuel  cycle  and  confinement  method  used.  Though  now  over  50  years  old,  the   field  is  still  very  young.  A  great  deal  of  emerging  technologies  look  promising  within   fusion.  Advances  in  other  areas  such  as  materials  technology,  could  be  a  boon  to  the   efforts  of  fusion  researchers  looking  to  create  more  efficient  reactors.  Similarly,   disruptive  technology  such  as  the  polywell  and  the  plethora  of  projects  lumped  under  the   term  ‘cold  fusion’  could  have  payoffs,  though  the  odds  of  this  are  not  considered  certain.   It  appears  that  within  the  fusion  community,  current  preference  is  towards  the  DT  cycle,   magnetically  confined  in  a  tokamak  environment.  This  is  obvious  in  the  amounts  of   money  being  spent  on  in  Europe  on  the  ITER  project,  although  the  USA  is  actively   researching  a  variety  of  inertial  confinement  technologies  in  tandem  with  their  own   tokamak  efforts.    With  advancements  in  future  we  may  be  looking  at  aneutronic  fusion,   though  the  road  to  commercial  fusion  is  ‘still’  some  decades  off.   The  next  section  addresses  public  awareness  and  opinion  of  fusion,  with  data  gathered   from  Europe  and  the  USA.   Public  awareness  of  fusion  -­‐  Getting  The   Message  Out Obviously,  informed  public  and  political  awareness  of  nuclear  fusion  will  be  an   extremely  important  factor  in  ensuring  that  fusion  gets  the  attention  it  deserves.  To  be   viable  as  an  energy  source,  fusion  must  be  understood,  at  least  at  some  level,  by  the   lay  public  who  would  one  day  reap  its  benefits.     Policymakers  in  energy  must  better  understand  what  the  fusion  is,  its  economic   implications,  and  long  term  performance  predictions.    Educators  and  thought  leaders   such  as  teachers  need  to  be  given  a  clear  understanding  of  the  subject  so  that  the   message  is  communicated  properly  by  these  vocal,  credible  sections  of  the   population.   Furthermore,  it  is  important  to  educate  the  public  on  the  distinctions  between  fusion   and  fission,  especially  as  the  definition  nuclear  (especially  thermonuclear)  has  a   negative  association  with  weaponry,  which  is  unavoidable.     Finally,  the  obvious  benefits  of  fusion  must  be  communicated  in  a  compelling,  but   impartial  and  factual  manner.  I  believe  that  encouraging  public  support  and  indeed,   approval  of  fusion  could  help  contribute  to  maintaining  political  pressure  that  ensures   fusion  gets  the  economic  support  that  it  needs  to  become  a  reality.     Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    
  36. 36. Layman’s Guide To Nuclear Fusion V1.0: Creative Commons Attribution-NonCommercial-ShareAlike 3.0   However,  it  is  clear  that  competition  for  public  mindshare  is  extremely  tough.  In  this   time  of  mass  media  the  amount  of  information  the  average  person  is  exposed  to  is   greater  than  ever  before.  The  fusion  message  has  to  contend  with  popular  culture,   constant  marketing,  and  the  concerns  of  normal  day  to  day  life;  a  great  many  global   and  personal  issues  take  up  the  average  person’s  attention  and  time.  Fusion  is  simply   not  a  priority  for  most  people.  This  is  understandable  perhaps  in  the  context  of  a  low   awareness  of  the  extent  of  the  energy  problem  facing  us  in  the  coming  decades.   Worse  still,  certain  anti  nuclear  pressure  groups  approach  fusion  in  the  same   combative  manner  they  have  reserved  for  fission.  For  example,  a  consortium  of  French   pressure  groups  Sortir  du  Nucleaire  (Get  Out  of  Nuclear  Energy),claimed  that  ITER   was  a  hazard  because  “scientists  did  not  yet  know  how  to  manipulate  the  high-­‐energy   deuterium  and  tritium  hydrogen  isotopes  used  in  the  fusion  process.”   -­‐  Source:  Deustch  Welle  -­‐  http://www.dwworld.de/dw/article/0,,1631650,00.html   In a report entitled Public Information in European Fusion Energy Research: Methods and Challenges, released by specialists working at fusion policy and research institutions around the EU, the opinions and awareness of the public in the EU towards fusion where measured. The following social groups where identified as communication targets. Each requires a different outreach strategy and message. Note: PI: Public information • Decision makers: due to direct link between the EU energy policy and the European fusion research this group needs to be informed on both European and national levels about the mission progress. The group consists of judicious, motivated, busy people. • Media: as a key intermediate to pro-active communication with general public, media (TV, radio, newspapers, journals) deserve high priority PI, namely personal relations. In fusion, media relations are established, as a rule, on national levels. • Schools & Universities: Teachers act as efficient intermediates to young people who will probably decide about the industrial future of fusion. Even before, fusion R&D will need a supply of new determined experts. Notice that fusion has relatively sparse professional links to Universities compared to other major research projects. • Interested Public: Although fusion cannot hope for a major pro-active influence of general public, any of those who are interested and request information must feel free to obtain it, hence the passive PI must be very broad and highly responsive. • Industry: Nowadays, the main topics in fusion research have expanded from basic plasma physics towards more technological tasks, e.g. to material research, which calls for direct involvement of different industries including their R&D. PI activities have to follow these developments and promote the opportunities. • Fusion Community: Due to international dimension of the research it is vital to foster good relations among fusion centres, calling for broad communications. • Scientific Community: support from the influential category of “other scientists” can be expected only if fusion community manages to inform them properly about the fusion research, its mission, results and strategy, as well as about joint interests.   Source:  http://www.iop.org/Jet/fulltext/EFDP05027.pdf   Findings:  The  report’s  findings  on  the  public  awareness  of  nuclear  fusion  where   not  very  promising.   Material  by  Jack  Oughton  –  available  for  writing  assignments,  contact:  |  writing@xijindustries.com  |   www.writing.xijindustries.com    

×