Your SlideShare is downloading. ×
  • Like
Quadrilaterals
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Now you can save presentations on your phone or tablet

Available for both IPhone and Android

Text the download link to your phone

Standard text messaging rates apply

Quadrilaterals

  • 1,442 views
Published

 

Published in Education , Technology
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Be the first to like this
No Downloads

Views

Total Views
1,442
On SlideShare
0
From Embeds
0
Number of Embeds
0

Actions

Shares
Downloads
83
Comments
1
Likes
0

Embeds 0

No embeds

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
    No notes for slide

Transcript

  • 1. By iTutor.com T- 1-855-694-8886 Email- info@iTutor.com
  • 2. Angle Sum Property of a Quadrilateral  The sum of the angles of a quadrilateral is 360º. Given: ABCD is a quadrilateral, To Prove: <A + <B + <C + <D = 360º Construction: Draw AC be a diagonal (see Fig.) Proof: In ∆ ADC we know that D A ∠ DAC + ∠ ACD + ∠ D = 180° ……………(i) C B
  • 3. Angle Sum Property of a Quadrilateral Similarly, in ∆ ABC, ∠ CAB + ∠ ACB + ∠ B = 180° …………. (ii) Adding (i) and (ii), we get ∠ DAC + ∠ ACD + ∠ D + D ∠ CAB + ∠ ACB + ∠ B = 180° + 180° = 360° Also, ∠ DAC + ∠ CAB =∠ A and ∠ ACD + ∠ ACB = ∠ C So, i.e., C A B ∠ A + ∠ D + ∠ B + ∠ C = 360° the sum of the angles of a quadrilateral is 360°.
  • 4. Properties of a Parallelogram  A diagonal of a parallelogram divides it into two congruent triangles. Given: ABCD be a parallelogram and AC be a diagonal AC divides into two D C triangles, ∆ ABC & ∆ CDA. To prove: ∆ ABC ≅ ∆ CDA Proof: In ∆ ABC and ∆ CDA We know that BC || AD and AC is a transversal So, A ∠ BCA = ∠ DAC ….(Pair of alternate angles) B
  • 5. Properties of a Parallelogram Also, So, AB || DC and AC is a transversal ∠ BAC = ∠ DCA ….........Pair of alternate angles And D C AC = CA …………… Common So, by the Rule of ASA ∆ ABC ≅ ∆ CDA A Diagonal AC divides parallelogram ABCD into two congruent triangles ABC and CDA B
  • 6. Properties of a Parallelogram  If each pair of opposite sides of a quadrilateral is equal, then it is a parallelogram. Given: Quadrilateral ABCD, sides AB and CD is equal and also AD = BC D C To Prove: ABCD is a Parallelogram Construction: Draw diagonal AC Proof: In ∆ ABC & ∆ CDA ∆ ABC ≅ ∆ CDA ……… S. S. S. So, ∠ BAC = ∠ DCA A B and ∠ BCA = ∠ DAC, So that the line AB||DC and AD||BC , So that ABCD is a parallelogram
  • 7. Properties of a Parallelogram  If the diagonals of a quadrilateral bisect each other, then it is a parallelogram. Given: Quadrilateral ABCD, diagonal AC and BD Where OA = OC and OB = OD D C To Prove: ABCD is a parallelogram So, ∆ AOB ≅ ∆ COD ….….. SAS Therefore, O ∠ ABO = ∠ CDO From this, we get AB || CD Similarly, A BC || AD Therefore ABCD is a parallelogram. B
  • 8. Properties of a Parallelogram  A quadrilateral is a parallelogram if a pair of opposite sides is equal and parallel. Given: ABCD be a quadrilateral in which AB = CD & AB||CD. D C Construction: Draw diagonal AC Proof: In ∆ ABC & ∆ CDA AC = AC …………same AB = CD …………Given <BAC = < ACD …..…Given A B ∆ ABC ≅ ∆ CDA ………..by SAS congruence rule. So, BC || AD
  • 9. Properties of a Parallelogram The opposite sides and opposite sides of a parallelogram are respectively equal in measure. b c 3 Given: Parallelogram abcd 4 1 a 2 To Prove: |ab| = |cd| and |ad| = |bc| and abc = adc d Construction: Draw the diagonal |ac|
  • 10. Properties of a Parallelogram The opposite sides and opposite sides of a parallelogram are respectively equal in measure. b c 3 4 1 a Proof: In the triangle abc and the triangle adc 1 = 4 …….. Alternate angles 2 = 3 ……… Alternate angles 2 d |ac| = |ac| …… Common The triangle abc is congruent to the triangle adc  ………ASA |ab| = |cd| and |ad| = |bc| and abc = adc = ASA.
  • 11. Mid-point Theorem  The line which joins the midpoints of two sides of a triangle is parallel to the third side and is equal to half of the length of the third side Given: In ∆ ABC where E and F are mid-points of AB and AC respectively To Prove: (i) EF || BC A E (ii) EF = 1 BC 2 B F C
  • 12. Mid-point Theorem Construction: Draw DC || AB to meet EF produced at D. A Proof: In ∆ AEF & ∆ CDF EFA =  CFD .................V. A. A. ………………..Given AF = CF AEF = CDF E ∆ AEF ≅ ∆ CDF And D …............A. I. A. B So, F ………..…..A. S. A. Rule EF = DF and BE = AE = DC DC || BE , the quadrilateral BCDE C
  • 13. Mid-point Theorem Therefore, BCDE is a parallelogram from the Properties of parallelogram A gives EF || BC. ---------------(i) Proved E F D BC = DE = EF + FD We Know that EF = DE So, BC = EF + EF Or, B BC = 2 EF Or , EF = 1 2 BC -------------(ii) Proved C
  • 14. Mid-point Theorem  The line through the midpoint of one side of a triangle when drawn parallel to a second side bisects the third side. Given: In ∆ ABC where E is the mid-point of AB, line l is passing through E and is parallel to BC . A To Prove: AF = FC E B F l C
  • 15. Mid-point Theorem Construction: Draw a line CM || AB to meet EF produced at D. A M Proof: CM || AB ………..(Const.) E F D EF || BC …………(Given) B So, Quadrilateral BCDE is a parallelogram, then BE = CD Now In ∆ AEF and ∆ CDF. CD = BE = AE , C
  • 16. Mid-point Theorem  CFD =  EFA …………..(Vertically apposite)  DCF =  EAF A …..(Alternate) So, ∆ AEF ≅ ∆ CDF …(ASA Rule) AF = CF Proved . B E M F D C
  • 17. Areas Of Parallelograms  Parallelograms on the same base and between the same parallels are equal in area. Given: Two parallelograms ABCD and EFCD, A E On the same base DC and between the same parallels AF and DC To Prove: D ar (ABCD) = ar (EFCD) B C F
  • 18. Areas Of Parallelograms Proof: In ∆ ADE and ∆ BCF, AD || BC ∠ DAE = ∠ CBF ……….. (Corresponding angles) A ED || FC ∠ AED = ∠ BFC E B (Corresponding angles) Therefore, ∠ ADE = ∠ BCF D C (Angle sum property of a triangle) Also, So, AD = BC (Opposite sides of the parallelogram ABCD) ∆ ADE ≅ ∆ BCF ………(By ASA rule) F
  • 19. Areas Of Parallelograms Therefore, ar (ADE) = ar (BCF) -------(Congruent figures have equal areas) ar (ABCD) = ar (ADE) + ar (EDCB) A E B F = ar (BCF) + ar (EDCB) = ar (EFCD) So, D C Parallelograms ABCD and EFCD are equal in area.
  • 20. Areas Of Triangles  Two triangles on the same base and between the same parallels are equal in area. A P Given: ∆ ABC and ∆ PBC on the same base BC and between the same parallels BC and AP B To Prove: ar (ABC) = ar (PBC) C
  • 21. Areas Of Triangles Construction: Draw CD || BA and CR || BP such that D and R lie on line AP A P D R Proof: From this, B C We have two parallelograms PBCR and ABCD on the same base BC and between the same parallels BC and AR. So, ar (ABCD) = ar (PBCR) ∆ ABC ≅ ∆ CDA and ∆ PBC ≅ ∆ CRP (A diagonal of a parallelogram divides it into two congruent triangles)
  • 22. Areas Of Triangles So, 1 ar (ABC) = 2 ar (ABCD) A D P (AC is a diagonal of ABCD) And B 1 ar (PBC) = 2 ar (PBCR) (PC is the diagonal of PBCR) Therefore, ar (ABC) = ar (PBC) Proved C R
  • 23. Areas Of Triangles  Area of a triangle is half the product of its base (or any side) and the corresponding altitude (or height) Proof : Now, suppose ABCD is a parallelogram whose one of the diagonals is AC, Draw AN ⊥ DC. D So, B A N C ∆ ADC ≅ ∆ CBA …………(ABCS is a parallelogram) ar (ADC) = ar (CBA). …(ABCS is a parallelogram)
  • 24. Areas Of Triangles Therefore, ar (ADC) = 1 ar (ABCD) 2 1 = 2 B A (DC× AN) D N C area of ∆ ADC = 1 × base DC × corresponding altitude AN 2 In other words, Area of a triangle is half the product of its base and the corresponding altitude.
  • 25. Call us for more Information: 1-855-694-8886 Visit www.iTutor.com The End