Your SlideShare is downloading.
×

×
Saving this for later?
Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.

Text the download link to your phone

Standard text messaging rates apply

Like this presentation? Why not share!

- Quadratic equations by Anup Mahato 23497 views
- Quadratic Function Presentation by RyanWatt 16938 views
- Quadratic equation by HOME! 2774 views
- Quadratics Equations by roszelan 1763 views
- Quadratic functions power point by tongj 2521 views
- lesson plan in solving quadratic e... by No Name 8615 views
- 3 Forms Of A Quadratic Function by guestc8e5bb 35529 views
- quadratic equations-1 by Yaganti Rao 10595 views
- Quadratic equations lesson 3 by KathManarang 8870 views
- Roots of Quadratic Equations by itutor 6668 views
- Word Problems with Quadratic Functions by Mrs. LaPage 14841 views
- Solving quadratic equations by Arnulfo Peña 821 views

2,749

Published on

No Downloads

Total Views

2,749

On Slideshare

0

From Embeds

0

Number of Embeds

3

Shares

0

Downloads

298

Comments

0

Likes

2

No embeds

No notes for slide

- 1. Martin-Gay, Developmental Mathematics 1 T- 1-855-694-8886 Email- info@iTutor.com By iTutor.com
- 2. Solving Quadratic Equation by Square Root Property We previously have used factoring to solve quadratic equations. This chapter will introduce additional methods for solving quadratic equations. Square Root Property If b is a real number and a2 = b, then ba Example ♦ Solve x2 = 49 2x ♦ Solve (y – 3)2 = 4 ♦ Solve 2x2 = 4 x2 = 2 749x y = 3 2 y = 1 or 5 243y ♦ Solve x2 + 4 = 0 x2 = 4 There is no real solution because the square root of 4 is not a real number.
- 3. Solve (x + 2)2 = 25 x = 2 5 x = 2 + 5 or x = 2 – 5 x = 3 or x = 7 5252x Example Solve (3x – 17)2 = 28 72173x 3 7217 x 72283x – 17 =
- 4. In all four of the previous examples, the constant in the square on the right side, is half the coefficient of the x term on the left. Also, the constant on the left is the square of the constant on the right. So, to find the constant term of a perfect square trinomial, we need to take the square of half the coefficient of the x term in the trinomial (as long as the coefficient of the x2 term is 1, as in our previous examples). Solving quadratic Equation by Completing the Square Example What constant term should be added to the following expressions to create a perfect square trinomial? x2 – 10x add 52 = 25 x2 + 16x add 82 = 64 x2 – 7x add 4 49 2 7 2
- 5. We now look at a method for solving quadratics that involves a technique called completing the square. It involves creating a trinomial that is a perfect square, setting the factored trinomial equal to a constant, then using the square root property from the previous section. Example Solving a Quadratic Equation by Completing a Square 1) If the coefficient of x2 is NOT 1, divide both sides of the equation by the coefficient. 2) Isolate all variable terms on one side of the equation. 3) Complete the square (half the coefficient of the x term squared, added to both sides of the equation). 4) Factor the resulting trinomial. 5) Use the square root property.
- 6. Solve by completing the square. y2 + 6y = 8 y2 + 6y + 9 = 8 + 9 (y + 3)2 = 1 y = 3 1 y = 4 or 2 y + 3 = = 11 Example Solve by completing the square. y2 + y – 7 = 0 y2 + y = 7 y2 + y + ¼ = 7 + ¼ 2 29 4 29 2 1 y 2 291 2 29 2 1 y (y + ½)2 = 4 29
- 7. The Quadratic Formula ♦ Another technique for solving quadratic equations is to use the quadratic formula. ♦ The formula is derived from completing the square of a general quadratic equation. ♦ A quadratic equation written in standard form, ax2 + bx + c = 0, has the solutions. a acbb x 2 42 Example ♦ Solve 11n2 – 9n = 1 by the quadratic formula. 11n2 – 9n – 1 = 0, so a = 11, b = -9, c = -1 )11(2 )1)(11(4)9(9 2 n 22 44819 22 1259 22 559
- 8. The Discriminant ♦The expression under the radical sign in the formula (b2 – 4ac) is called the discriminant. ♦The discriminant will take on a value that is positive, 0, or negative. ♦The value of the discriminant indicates two distinct real solutions, one real solution, or no real solutions, respectively. Example Use the discriminant to determine the number and type of solutions for the following equation. 5 – 4x + 12x2 = 0 a = 12, b = –4, and c = 5 b2 – 4ac = (–4)2 – 4(12)(5) = 16 – 240 = –224 There are no real solutions.
- 9. Steps in Solving Quadratic Equations 1. If the equation is in the form (ax + b)2 = c, use the square root property to solve. 2. If not solved in step 1, write the equation in standard form. 3. Try to solve by factoring. 4. If you haven’t solved it yet, use the quadratic formula. Example ♦ Solve 12x = 4x2 + 4. 0 = 4x2 – 12x + 4 0 = 4(x2 – 3x + 1) Let a = 1, b = -3, c = 1 )1(2 )1)(1(4)3(3 2 x 2 493 2 53 0 2 1 8 5 2 mm 0485 2 mm 0)2)(25( mm 02025 mm or 2 5 2 mm or ♦ Solve the following
- 10. x y Graph y = 2x2 – 4. x y 0 –4 1 –2 –1 –2 2 4 –2 4 (2, 4)(–2, 4) (1, –2)(–1, – 2) (0, –4) Graphs of Quadratic Equations Example ♦The graph of a quadratic equation is a parabola. ♦The highest point or lowest point on the parabola is the vertex.
- 11. Although we can simply plot points, it is helpful to know some information about the parabola we will be graphing prior to finding individual points. To find x-intercepts of the parabola, let y = 0 and solve for x. To find y-intercepts of the parabola, let x = 0 and solve for y. Intercepts of the Parabola Characteristics of the Parabola ♦ If the quadratic equation is written in standard form, y = ax2 + bx + c, 1) the parabola opens up when a > 0 and opens down when a < 0. 2) the x-coordinate of the vertex is . a b 2 To find the corresponding y-coordinate, you substitute the x-coordinate into the equation and evaluate for y.
- 12. x y Graph y = –2x2 + 4x + 5. x y 1 7 2 5 0 5 3 –1 –1 –1 (3, –1)(–1, –1) (2, 5)(0, 5) (1, 7) Since a = –2 and b = 4, the graph opens down and the x- coordinate of the vertex is 1 )2(2 4 Example
- 13. Domain and Range Recall that a set of ordered pairs is also called a relation. The domain is the set of x-coordinates of the ordered pairs. The range is the set of y-coordinates of the ordered pairs. Example Find the domain and range of the relation {(4,9), (–4,9), (2,3), (10, –5)} ♦ Domain is the set of all x-values, {4, –4, 2, 10} ♦ Range is the set of all y-values, {9, 3, –5}
- 14. Find the domain and range of the function graphed to the right. Use interval notation. x y Domain is [–3, 4] Domain Range is [–4, 2] Range Example
- 15. Find the domain and range of the function graphed to the right. Use interval notation. x y Domain is (– , ) DomainRange is [– 2, ) Range
- 16. Graph each “piece” separately. Graph 3 2 if 0 ( ) . 3 if 0 x x f x x x Graphing Piecewise-Defined Functions Example Continued. x f (x) = 3x – 1 0 – 1(closed circle) –1 – 4 –2 – 7 x f (x) = x + 3 1 4 2 5 3 6 Values 0. Values > 0.
- 17. Example continued x y x f (x) = x + 3 1 4 2 5 3 6 x f (x) = 3x – 1 0 – 1(closed circle) –1 – 4 –2 – 7 (0, –1) (–1, 4) (–2, 7) Open circle (0, 3) (3, 6)
- 18. Martin-Gay, Developmental Mathematics 18 The End Call us for more information: www.iTutor.com 1-855-694-8886 Visit

Be the first to comment