• Save
建構嵌入式Linux系統於SD Card
Upcoming SlideShare
Loading in...5
×
 

建構嵌入式Linux系統於SD Card

on

  • 2,369 views

...



http://www.ittraining.com.tw/ittraining/index.php/activity?id=218
建構嵌入式Linux系統於SD Card

本組專題研究目標是如何將整個嵌入式Linux系統,包含Uboot, Kernel , Root filesystem 整個建置於SD卡上並且整個系統可直接從SD卡上開機,使得板子完全不須要 NOR Flash 或 NAND Flash。如果可以做到這一點, 便意謂著只要插上不同的SD卡,就可以立即更換掉整個系統的功能。為了實現這個功能,我們首先要克服以下幾個問題:CPU 如何直接從外部裝置SD Card開機 ? 若可以從SD card 開機 ,U-boot要放在SDcard的那個位置? 接著 Linux Kernel 和 Root filesystem 又該放在SDcard那個位置? Kernel 如何找到檔案系統? 如何讀取SD 卡? 若是SDHC卡會有不一樣的結果嗎?本組的結訓專題以Samsung S3C6410 (ARM11)為實驗平台,並實際解決上述問題,最終我們我們做到完全以SD卡開機!並且同時完成一個簡易但好用的工具程式,可以自動規
劃SD卡並自動將映像檔寫入對應磁區

Statistics

Views

Total Views
2,369
Views on SlideShare
1,558
Embed Views
811

Actions

Likes
1
Downloads
19
Comments
0

1 Embed 811

http://www.ittraining.com.tw 811

Accessibility

Categories

Upload Details

Uploaded via as Microsoft PowerPoint

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

建構嵌入式Linux系統於SD Card Presentation Transcript

  • 1. Embedded System on SD Vincent Chen Annie Cheng YuChin Huang Jason Kung 2013-09-18
  • 2. Motivation Typically, most embedded systems load system from NAND flash on the target device. That means the boot loader, kernel and file system are fused on the NAND flash. However, in the beginning stage of implementation, the NAND flash is totally empty, which means, at least, we have to fuse boot loader into the NAND flash, and then fuse kernel and file system to bring up the system. To fuse the boot loader into NAND flash is not easy as just copy a file. We have to use specific tools like chip programmer or JTAG. Some of these tools are expensive or not easy to get. Users also need to wait patiently while programming a NAND flash because it takes time. Frequently programming NAND flash also impacts its endurance due to its physical character. Thus, if we can find a way to build a system on other external storage device, like SD card, it would be save a lot of time, cost, and even NAND flash life cycle.
  • 3. Embedded System (boot from NAND) SD I/F Boot Loader CPU Memory controller NAND flash controller Kernel Memory NAND File System
  • 4. Embedded System (SD recovery mode) SD I/F Boot Loader SD / SDHC CPU Memory controller NAND flash controller Kernel Memory NAND File System
  • 5. Embedded System (boot from SD) SD I/F Boot Loader SD / SDHC CPU Memory controller NAND flash controller Kernel Memory NAND File System
  • 6. Purpose - Build the embedded system on SD card - Loading system from SD card completely without NAND flash support. - The file system on SD card supports read and write facility. - Implement a utility to fuse boot loader, kernel and file system to SD card easily. Replace boot from NAND Load u-boot Loader Kernel Load File system File system readable / writable          
  • 7. Benefits - System is easy to recover/update just simply replace the SD card. - Cost down NAND/NOR flash become optional, not a necessary component anymore. It saves BOM cost. - Product in test stage Modify/update codes easily. - Multi-OS in one device Switch OS among different SD cards.
  • 8. Platform - DMA6410L - AP: Samsung S3C6410XH-66, 667Mhz - RAM: mDDR 128MB (64MB * 2) - Ethernet I/F: DM9000AE - Display: 4.3” TFT (480*272) - UART: UART * 1 (for debug) - SD card I/F: SD card slot * 1
  • 9. How … To achieve system on SD card, we will face the following issues, - CPU supports boot from SD card. How does it work? - An embedded system has three parts: u-boot (boot loader), kernel and file system. We have to know the exact position in SD card. - SD card has SDSC (Standard-Capacity), SDHC (High-Capacity) and SDXC (eXtended-Capacity.) Does all of them can be supported by CPU? - How to make the boot loader loads kernel and than kernel loads file system exactly?
  • 10. Boot Loader (u-boot)
  • 11. S3C6410 iROM booting S3C6410 ARM1176JZF-S SDRAM Controller SDRAM Booting Device (SD/MMC Card, OneNAND, Nand) Stepping Stone (8KB) iROM(BL0) (32KB) OM=iROM Boot HS-MMC Controller BL2 Kernel OneNAND Controller D-TCM (16KB) BL1 (8KB) File System NAND Controller GPN[15:13]:Booting device pin selection 1.iROM supports initial boot up Initialize system clock, D-TCM, device specific controller and booting device.
  • 12. S3C6410 iROM booting (cont.) S3C6410 ARM1176JZF-S SDRAM Controller SDRAM Booting Device (SD/MMC Card, OneNAND, Nand) Stepping Stone (8KB) iROM(BL0) (32KB) OM=iROM Boot HS-MMC Controller BL2 Kernel OneNAND Controller D-TCM (16KB) BL1 (8KB) File System NAND Controller GPN[15:13]:Booting device pin selection 2.iROM boot codes can load 8KB of boot loader to stepping stone. The 8 KB boot loader is called BL1.
  • 13. S3C6410 iROM booting (cont.) S3C6410 ARM1176JZF-S SDRAM Controller SDRAM Booting Device (SD/MMC Card, OneNAND, Nand) Stepping Stone (8KB) iROM(BL0) (32KB) OM=iROM Boot HS-MMC Controller BL2 Kernel OneNAND Controller D-TCM (16KB) BL1 (8KB) File System NAND Controller GPN[15:13]:Booting device pin selection 3.BL1 can initialize system clock, UART, and SDRAM for user. After initializing, BL1 will load the remaining boot loader called BL2 to SDRAM.
  • 14. S3C6410 iROM booting (cont.) S3C6410 ARM1176JZF-S SDRAM Controller SDRAM Booting Device (SD/MMC Card, OneNAND, Nand) Stepping Stone (8KB) iROM(BL0) (32KB) OM=iROM Boot HS-MMC Controller BL2 Kernel OneNAND Controller D-TCM (16KB) BL1 (8KB) File System NAND Controller GPN[15:13]:Booting device pin selection 4.Finally, jump to start address of BL2. That will make good environment to use system.
  • 15. SD/SDHC Device Block Assignment 1 Block = 512 bytes SD/MMC Device File System Kernel BL2 BL1 Signature Reserved (4MB) (256KB) (8KB) (512B) (512B) 8192 512 16 1 1 Last 1 Block = 512 bytes SDHC Device File System Kernel (4MB) BL2 (256KB) 8192 512 BL1 Signature (8KB) (1024B) 16 2 Skipped (512KB) 1024 Last
  • 16. For Instance … 2 GB SD 4 GB SDHC 2,021,654,528 bytes 3,958,544 blocks 3,965,190,144 bytes 7,744,512 blocks File System File System 3,939,822 7,734,766 Kernel Kernel 8,192 blocks 3,948,014 BL2 BL2 512 blocks 3,948,526 8,192 blocks 7,742,958 512 blocks 7,743,470 BL1 BL1 16 blocks 3,958,542 3,958,544 16 blocks 7,743,486 Last 2 blocks 1 Block = 512 bytes 7,744,488 7,744,512 Last Skipped 2 blocks 1,024 blocks 1 Block = 512 bytes
  • 17. Screenshot (boot from 2G SD) 2 GB SD 2,021,654,528 bytes 3,958,544 blocks File System 2GB SD 3,939,822 Kernel 8,192 blocks 3,948,014 BL2 512 blocks 3,948,526 BL1 16 blocks 3,958,542 3,958,544 Last 2 blocks 1 Block = 512 bytes
  • 18. Screenshot (boot from 4G SD) 4 GB SDHC 3,965,190,144 bytes 7,744,512 blocks File System 4GB SD 7,734,766 Kernel 8,192 blocks 7,742,958 BL2 512 blocks 7,743,470 BL1 16 blocks 7,743,486 7,744,488 7,744,512 Last Skipped 2 blocks 1,024 blocks 1 Block = 512 bytes
  • 19. smdk6410.h Bootloaderu-bootincludeconfigssmdk6410.h /*********************************************************** * Command definition ***********************************************************/ #define CONFIG_COMMANDS (CONFIG_CMD_DFL | CFG_CMD_CACHE | CFG_CMD_USB | CFG_CMD_REGINFO | Add CFG_CMD_MOVINAND CFG_CMD_LOADS | CFG_CMD_LOADB | to make u-boot supports CFG_CMD_ENV | movinand (SD/MMC) CFG_CMD_NAND | CFG_CMD_MOVINAND | CFG_CMD_RUN | CFG_CMD_DATE | CFG_CMD_PING | CFG_CMD_ELF) & ~(CFG_CMD_AUTOSCRIPT | CFG_CMD_BOOTD | CFG_CMD_IMI | CFG_CMD_CONSOLE | 0)
  • 20. smdk6410.h (cont.) Bootloaderu-bootincludeconfigssmdk6410.h /* Boot configuration (define only one of next 3) */ //#define CONFIG_BOOT_NOR // #define CONFIG_BOOT_NAND Make u-boot boots from #define CONFIG_BOOT_MOVINAND movinand //#define CONFIG_BOOT_ONENAND //#define CONFIG_BOOT_ONENAND_IROM #define CONFIG_NAND //#define CONFIG_ONENAND #define CONFIG_MOVINAND //#define CONFIG_MMC //#define CONFIG_MMC_S3C //#define CFG_MMC_BASE //#define CFG_MMC_BASE 1 1 0xff000000 0xf0000000 bootcmd setting #elif defined(CONFIG_BOOT_MOVINAND) #define CFG_ENV_IS_IN_MOVINAND #define CONFIG_BOOTCOMMAND "movi read zImage c0008000;bootm c0008000"
  • 21. movi.h Bootloaderu-bootincludemovi.h #if defined(CONFIG_S3C2450) || defined(CONFIG_S3C2416) #define HSMMC_CHANNEL 1 Define HSMMC_CHANNEL #else #define HSMMC_CHANNEL 1 //0-->TF 1--> SD #endif /* offset information */ #define PART_UBOOT_OFFSET #define PART_ZIMAGE_OFFSET #define PART_ROOTFS_OFFSET #define PART_EXTRA_OFFSET /* movinand definitions */ #define MOVI_BLKSIZE 0x0 0x40000 0x440000 0x3200000 512 Offset in movinand (SD card) **refer page 16 Block size definition 1 block = 512 bytes
  • 22. movi.h (cont.) Bootloaderu-bootincludemovi.h #define #define #define #define MOVI_LAST_BLKPOS MOVI_BL1_BLKCNT MOVI_ENV_BLKCNT MOVI_BL2_BLKCNT #define MOVI_ZIMAGE_BLKCNT #define MOVI_BL2_POS #define MOVI_ROOTFS_BLKCNT (MOVI_TOTAL_BLKCNT - (eFUSE_SIZE / MOVI_BLKSIZE)) (SS_SIZE / MOVI_BLKSIZE) (CFG_ENV_SIZE / MOVI_BLKSIZE) (((PART_ZIMAGE_OFFSET - PART_UBOOT_OFFSET) / MOVI_BLKSIZE) - MOVI_ENV_BLKCNT) ((PART_ROOTFS_OFFSET - PART_ZIMAGE_OFFSET) / MOVI_BLKSIZE) (MOVI_LAST_BLKPOS - MOVI_BL1_BLKCNT – MOVI_BL2_BLKCNT - MOVI_ENV_BLKCNT) 8 * 1024 * 1024 / MOVI_BLKSIZE //(PART_SIZE_ROOTFS / MOVI_BLKSIZE) According to the formulas above, we can easily calculate the exact position of each segment. (you can check the following excel file to get more detailed information.) **refer page 16
  • 23. hs_mmc.c Bootloaderu-bootcpus3c64xxhs_mmc.c int hsmmc_init (void) { u32 reg; uint width; issue_command(MMC_GO_IDLE_STATE, 0x00, 0, 0); issue_command(MMC_SEND_EXT_CSD, 0x000001AA, 0, MMC_RSP_R1); Add this statement to initial SDHC /* MMC_SET_BLOCKLEN */ while (!issue_command(MMC_SET_BLOCKLEN, 512, 0, MMC_RSP_R1)); s3c_hsmmc_writew(0xffff, HM_NORINTSTS); return 0; }
  • 24. Kernel (zImage)
  • 25. Kernel Configuration
  • 26. Kernel Configuration (cont.)
  • 27. Kernel Configuration (cont.)
  • 28. Kernel Configuration (cont.)
  • 29. Environment Setting - bootcmd setenv bootcmd “movi read zImage c0008000;bootm c0008000” **refer page 21
  • 30. File System
  • 31. Environment Setting - bootargs setenv bootargs “root=/dev/mmcblk0p2 rootfstype=ext3 rootdelay=3 init=/linuxrc console=ttySAC0,115200” **set bootargs at smdk6410.h
  • 32. Screenshot Note: The root file system is pre-built in SD card.
  • 33. Fusing Tool
  • 34. Fusing Tool To fuse the boot loader (u-boot.bin), kernel (zImage), and file system (rootfs.tar) to SD card automatically. sdcard=$1 if [ "$sdcard" = "" ];then echo " # Usage - ./sd.sh /dev/SDcardDevicename (ex. sd.sh /dev/sdc)" echo " # prepare the necessary files(zImage,rootfs.tar,uboot.bin rootfs.tar is a tar.bz2 file)" echo " # and verify that the device is correct" exit 0 . mkdir /mnt1 mount ${sdcard}2 /mnt1 tar -jxvf rootfs.tar -C /mnt1 cp -rap /mnt/rootfs/* /mnt1 umount /mnt1 rm -rf /mnt1
  • 35. How to use the fusing tool root@Linux:~# ./sd4.sh /dev/sdc 1. Run the shell script “sd4.sh” as root. 2. Assign the block device where the SD card exists (ex. /dev/sdc). 3. The root file system has to be packed as rootfs.tar before running this shell script. 4. The boot loader (u-boot.bin), kernel (zImage) and the file system (rootfs.tar) must exist in the same folder. 5. The name of the files u-boot.bin, zImage, and rootfs.tar are fixed, casesensitive.
  • 36. How the shell script works step command 1. Check the device user enters exists and make sure it is an SD card. 2. Partition the device (two partitions will be made). fdisk 3. Format the second partition as ext3. mkfs.ext3 4. Fuse the first 8k of u-boot.bin to the BL1 area of the SD card. dd 5. Fuse the u-boot.bin to the BL2 area of he SD card. (u-boot.bin has to be smaller than 256KB) dd 6. Fuse the zImage to the kernel area of he SD card. dd 7. Make a directory named /mnt1 as the mount point mkdir 8. Mount the second partition (ext3) to the mount point (/mnt1). mount 9. Extract rootfs.tar to /mnt1 Tar 10. Un-mount the mount point (/mnt1) umount 11. Delete the mount point (/mnt1) rm
  • 37. Member Introduction
  • 38. Member Introduction Name Education Background Tasks of the project Working Experience Vincent Chen (Team Leader) Lan Yang Institute of Technology BS. Electronics Engineering - Kernel implement: - MTD support - MMC/SD card support - Kernel logo display - R&D Engineer (Electric Meters) - Field Application Engineer Annie Cheng Ming Hsin University of Science and Technology BS. In Electronic Engineering - Hardware layout tracing for SD/SDHC boot - Documentation - Senior Validation Engineer (CPU Electrical / Margining) - System Validation Test Engineer YiChin Huang Chih Lee Institute of Technology BS. in Information Management - U-boot support SDHC implement - SD card fusing tool implement Jason Kung Texas A&M University - Commerce MS. In Computer Science MS. In Management - U-boot support SD implement - Kernel, File System (ext3, readable/writable)on SD - Field Application Engineer (ARM Application Processor) - Product Manager (ARM Application Processor)
  • 39. Thank You