SlideShare a Scribd company logo
1 of 30
DETERMINANTES Definição :  Determinante é um número associado a uma matriz quadrada de ordem  n x n. Matriz quadrada de ordem 1 Se A é uma matriz quadrada de ordem 1, isto é A = ( a 11  ), o seu determinante será o próprio elemento a 11 . det A = a 11   = a 11   Exemplo.: A = ( 120 )   det A = 120 B = (– 29 )   det A = – 29
Matriz quadrada de ordem 2  det A =  =  a 11     a 22  – a 12     a 21    Produto dos elementos da diagonal principal menos o produto da diagonal secundária. det A =  =  (–3)    (–5) – (2)    (1) det A =  15 – 2 = 13 det A =  13 A =  a 11   a 12   a 21   a 22   a 11   a 12   a 21   a 22   A =  – 3  2 1  –5  – 3  2 1  –5
Matriz quadrada de ordem 3 Regra de Sarrus : Repete-se as duas primeiras linhas abaixo da terceira linha ou repete-se as duas primeiras colunas após a terceira coluna. Em seguida, calcula-se a soma do produto da diagonal principal com o produto das diagonais paralelas a ela (SDP). Faz-se o mesmo com a diagonal secundária e suas paralelas (SDS). Em seguida, faz-se a diferença desses valores obtidos com as diagonais. (det A = SDP – SDS)
a 11   a 12   a 13   a 21   a 22   a 23 a 31   a 32   a 33 a 11   a 12   a 13   a 21   a 22   a 23 det A = SDP – SDI  a 11   a 12   a 13  a 11   a 12 a 21   a 22   a 23   a 21   a 22 a 31   a 32   a 33   a 31   a 32 ou SDP =  ( a 11  a 22  a 33  +  a 21  a 32  a 13  +  a 31  a 12  a 23  ) SDS =  ( a 13  a 22  a 31  +  a 23  a 32  a 11  +  a 33  a 12  a 21  )
Propriedades dos determinantes 1.  Um determinante será nulo quando possuir uma fila formada só por zeros ou duas filas paralelas iguais ou proporcionais det A =  =  (0)    (5) – (0)    (3) 0 – 0 =  =  0 det A =  –  det A = 0   0  0  3  5  1  3  5  3  0  –5 1  3  5 det A =  ( 0 +  45  –  15 ) ( 0 +  45  –  15 )
2.  Se trocarmos entre si a posição de duas filas paralelas, o determinante mudará o sinal. det A =  –  det A = –28  det A =  –  =  –  det A = 28  –  1  3  5  3  0  –5 2  1  2 det A =  ( 0 +  15  –  30 ) ( 0 –  5 +  18 ) (– 15 ) ( 13 ) 2  1  2  3  0  –5 1  3  5 det A =  ( 0 +  18  –  5 ) ( 0 –  30 +  15 ) ( 13 ) ( –15 )
3.  Se multiplicarmos umas das filas de uma matriz quadrada por um número  k , o seu determinante ficará multiplicado por  k . det A =  =  (10) – (12) = –2  det B =  =  (30) – (36) = –6 k  = 3 det B =  k  det A det B = 3  (–2) = –6 2  4  3  5  6  12  3  5
4.  Da propriedade 3, decorre que: det (  k  A n  ) =  k n  det A n .  3  A 2  =  det ( 3  A 2 ) =  =  (90) – (108) = –18 det ( 3  A 2  ) = 3 2  det A 2  = 9  (–2) = –18  k  = 3 A 2  =  2  4  3  5  6  12 9  15  6  12 9  15
5.  det A = det A T  . det A =  –  det A = –28  det A =  –  det A T  =  –  det A T  = –28  det A T  =  –  1  3  5  3  0  –5 2  1  2 det A =  ( 0 +  15  –  30 ) ( 0 –  5 +  18 ) (– 15 ) ( 13 ) 1  3  2  3  0  1 5  –5  2 det A T  =  ( 0 –  30 + 15 ) ( 0 –  5 +  18 ) (– 15 ) ( 13 )
6.  det ( A n     B n  ) = det A    det B B 2  =  ; =  det ( A n     B n  ) = 400 – 392 = 8 det A    det B = (–2)    (–4) = 8  A 2  =  2  4  3  5  3  10 1  2  A 2     B 2  =  2  4  3  5  3  10 1  2   10  28 14  40
7.  det I n   =  1 det I 3  = 1  8.  O determinante de matrizes triangulares e de matrizes diagonais se resume ao produto dos elementos da diagonal principal. det A = 5    (–2)    3 = –30  1  0  0  0  1  0 0  0  1 det I 3  =  5  3  2  0  –2  1 0  0  3 det A =
Matriz inversa Seja A uma matriz quadrada de ordem n. Essa matriz possuirá inversa (A –1 ) se, e somente se, seu determinante for diferente de zero.   A –1   A = A    A –1  = I    det A    0.   3. Se A possuir inversa, essa será única. 1. Se A 2x2  = a  b c  d , então : A –1  =  d  –b  – c  a  det A det A det A det A 2. det  A –1  = 1  det A , det A    0
01. (Fuvest – SP) Se a é uma matriz 2x2 iversível que satisfaz A 2  = 2A, então o determinante de A será: ,[object Object],[object Object],[object Object],[object Object],[object Object],det A    det A = 2 2     det A  det A = 4 det A 2  = det (2A)  E
x  x  1  2  x  –x 1  x  1 P(x) =  x  x  1  2  x  –x P(x) = x 2  + 2x – x 2  – x + x 3  – 2x  P(x) = x 3  – x  Grau 3 ,[object Object],[object Object],[object Object],[object Object],[object Object],02. (Udesc) O grau do polinômio que expressa o determinante da matriz A =  x  x  1  2  x  –x 1  x  1 A
03. (UFSC) Assinale a(s) proposição(ões)  correta(s) . (01) Se K = (k ij ) é uma matriz quadrada de ordem 2 dada por k ij  = 2 2i + j  para i < j e k ij  = i 2  + 1 para i  >  j, então k é uma matriz inversível. k 11  = 1 2  + 1 = 2 k 12  = 2 2(1) + 2  = 2 4  = 16 k 21  = 2 2  + 1 = 5 k 22  = 2 2  + 1 = 5 Det K = 10 – 80 = –70    0     é inversível (01) - correta K =  k 11   k 12   k 21   k 22   K =  2  16 5  5
(02) Se A e B são matrizes tais que A    B é uma matriz nula, então A é uma matriz nula ou B é uma matriz nula. A    B = 0 não implica em A = 0 ou B = 0. (02) - incorreta (04) Sejam as matrizes M e P, respectivamente de tipos 5x7 e 7x5. Se R = MP, então a matriz R 2  tem 625 elementos. M 5x7     P 7x5  = R 5x5   (A matriz R possui 25 elementos) Logo, a matriz R 2  tem 25 elementos. c.e.p Ordem n (04) - incorreta
(08) Chamamos de “traço de L” e anotamos Tr(L) a soma do elementos da diagonal principal de uma matriz quadrada L; então Tr(L) = Tr(L T ). A transposta de uma matriz não altera sua diagonal principal. (08) - correta GABARITO QUESTÃO 03 : 01 + 08 = 09
SISTEMAS LINEARES Equação Linear é uma equação de forma: a 1  x 1  + a 2  x 2  + a 3  x 3  + ... + a n  x n   = b Portanto, um sistema será linear quando for composto de equações lineares. linear não-linear 2x + 3y = 5 x – y = 2 2x 2  + 3y = 5 x – y = 2 2x + 3y – z  = 5 x – y  + z = 2 – 5x – 3y + 4z = 10 2xy + 3y = 5 x – y = 2
Observações:  1. Forma matricial Forma matricial completa 2. A matriz constituída apenas pelos coeficientes é denominanda  matriz principal . 3x + 2y + z  = 1 x – y  + 3z = 2 5x + 2y + z = 7 3  2  1  1  –1  3  5  2  1  x y z 1 2 7 = . 3  2  1  1  1  –1  3  2  5  2  1  7
3. Se o número de equações é igual ao número de variáveis e o determinante da matriz principal  (  ) for diferente de zero,o sistema recebe o nome de  normal . 4. Se todos os termos independentes são nulos (0), o sistem é chamado de  homogêneo . 2x + 3y = 0 x – y = 0
Método de Cramer a 11  x 1  + a 12  x 2  + a 13  x 3  + ... + a 1n  x n   = b 1 a 21  x 1  + a 22  x 2  + a 23  x 3  + ... + a 2n  x n   = b 2 a n1  x 1  + a n2  x 2  + a n3  x 3  + ... + a nn  x n   = b n . . . a 11  a 12   a 13   ...  a 1n a 21  a 22   a 23   ...  a 2n . . . . . . a n1  a n2   a n3   ...  a nn    =
b 1  a 12   a 13   ...  a 1n b 2  a 22   a 23   ...  a 2n . . . . . . b n  a n2   a n3   ...  a nn  x 1  =  a 11  b 1   a 13   ...  a 1n a 21  b 2   a 23   ...  a 2n . . . . . . a n1  b n   a n3   ...  a nn  x 2  =  a 11  a 12   b 1   ...  a 1n a 21  a 22   b 2   ...  a 2n . . . . . . a n1  a n2   b n   ...  a nn  x 3  =  . . .
Se       0 temos: a 11  a 12   a 13   ...  b 1 a 21  a 22   a 23   ...  b 2 . . . . . . a n1  a n2   a n3   ...  b n  x n  =  . . .  x 1   x 1  =    x 2   x 2  =    x 3   x 3  =    x n   x n  =   , , , ... ,
S = {(x, y)} S = {(2, 1)} Exemplo:    =  3  2 1  -1 = – 3 – 2 = – 5   x  =  8  2 1  -1 = – 8 – 2 = – 10   y  =  3  8 1  1 = 3 – 8 = – 5 3x + 2y = 8 x – y = 1 x =   x    =  – 10 – 5 = 2  y =   y    =  – 5 – 5 = 1
DISCUSSÃO DE SISTEMAS Solução única       0 Infinitas soluções     =   x =   y =   z = 0 Infinitas soluções    = 0 e   x    0 ou   y    0 ou   z    0. Sistema linear Possível Impossível (sem solução) determinado indeterminado
Se o sistema linear for homogêneo: Possível e determinado (       0 , S = {(0, 0, 0, ..., 0)} ) Solução trivial Possível e indeterminado (    = 0 ) (Além da trivial, admitirá soluções próprias)
04. Três amigos sobem em uma balança de dois em dois. Antônio e Beatriz somam 30 kg e Beatriz e Caio, 28 kg. Sabe-se que Antônio e Caio pesam juntos 34 kg. Quanto pesa Beatriz? (–) 2B = 24 B = 12 Beatriz tem 12 kg. A + B  = 30 B + C = 28 A  + C = 34 A + B = 30 -A + B = –6 +
05. (UFSM – RS) Considere o sistema  .  Então, pode-se afirmar que o sistema é:  ,[object Object],[object Object],[object Object],[object Object],[object Object],x + y + z = 1 2x + 2y + 2z = m 3x + 3y + 3z = 4
   (2)    (3) Impossível para qualquer valor de m. x + y + z = 1 2x + 2y + 2z = m 3x + 3y + 3z = 4 x + y + z = 1 x + y + z =  4 3  x + y + z = m 2 x + y + z = 1 x + y + z =  4 3  B
Acesse as nossas páginas e confira uma infinidade de simulados de Matemática e de outras matérias! www.vestibular1.com.br Vestibular1 – O Número 1 em vestibulares! A melhor ajuda ao vestibulando na Internet e em todo o Brasil. O Portal que mais aprova! Confira! Apoio total aos vestibulandos! Autor desta Aula: ANALBERTO SCHOT - professor BELL. Criciúma - SC

More Related Content

What's hot

Exercícios sistemas de equações
Exercícios sistemas de equaçõesExercícios sistemas de equações
Exercícios sistemas de equaçõesAdriano Silva
 
Métodos Para Resolver Sistemas de Equações Lineares
Métodos Para Resolver Sistemas de Equações LinearesMétodos Para Resolver Sistemas de Equações Lineares
Métodos Para Resolver Sistemas de Equações LinearesMayara Mônica
 
Cálculo numérico aula 04 - resolução de sistemas de equações lineares - mét...
Cálculo numérico   aula 04 - resolução de sistemas de equações lineares - mét...Cálculo numérico   aula 04 - resolução de sistemas de equações lineares - mét...
Cálculo numérico aula 04 - resolução de sistemas de equações lineares - mét...Rodolfo Almeida
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas linearesISJ
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas linearesISJ
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas linearesAntonio Carneiro
 
Aula 1 integrais du e tr c_po_cci_ces
Aula 1  integrais du e tr c_po_cci_cesAula 1  integrais du e tr c_po_cci_ces
Aula 1 integrais du e tr c_po_cci_cesGabriela Di Mateos
 
Resolução de Sistemas Lineares
Resolução de Sistemas LinearesResolução de Sistemas Lineares
Resolução de Sistemas LinearesKleber Jacinto
 
Equações Irracionais
Equações IrracionaisEquações Irracionais
Equações IrracionaisCarlos Campani
 
Equacoes do 1o_grau_e_sua_resolucao
Equacoes do 1o_grau_e_sua_resolucaoEquacoes do 1o_grau_e_sua_resolucao
Equacoes do 1o_grau_e_sua_resolucaoLipa Dias
 
Congruências Quadráticas
Congruências QuadráticasCongruências Quadráticas
Congruências QuadráticasLuciana Martino
 
Sistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitasSistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitasGleidson Luis
 
EQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãoEQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãobetontem
 
Unid 2- sistemas lineares
Unid 2- sistemas linearesUnid 2- sistemas lineares
Unid 2- sistemas linearesBrenda Rayza
 

What's hot (20)

05 regra de cramer
05   regra de cramer05   regra de cramer
05 regra de cramer
 
Exercícios sistemas de equações
Exercícios sistemas de equaçõesExercícios sistemas de equações
Exercícios sistemas de equações
 
018345 sistema linear
018345 sistema linear018345 sistema linear
018345 sistema linear
 
Métodos Para Resolver Sistemas de Equações Lineares
Métodos Para Resolver Sistemas de Equações LinearesMétodos Para Resolver Sistemas de Equações Lineares
Métodos Para Resolver Sistemas de Equações Lineares
 
Cálculo numérico aula 04 - resolução de sistemas de equações lineares - mét...
Cálculo numérico   aula 04 - resolução de sistemas de equações lineares - mét...Cálculo numérico   aula 04 - resolução de sistemas de equações lineares - mét...
Cálculo numérico aula 04 - resolução de sistemas de equações lineares - mét...
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas lineares
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas lineares
 
Determinantes sistemas lineares
Determinantes sistemas linearesDeterminantes sistemas lineares
Determinantes sistemas lineares
 
Mat69a
Mat69aMat69a
Mat69a
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Aula 1 integrais du e tr c_po_cci_ces
Aula 1  integrais du e tr c_po_cci_cesAula 1  integrais du e tr c_po_cci_ces
Aula 1 integrais du e tr c_po_cci_ces
 
Resolução de Sistemas Lineares
Resolução de Sistemas LinearesResolução de Sistemas Lineares
Resolução de Sistemas Lineares
 
Equações Irracionais
Equações IrracionaisEquações Irracionais
Equações Irracionais
 
Equaçoes literais
Equaçoes literaisEquaçoes literais
Equaçoes literais
 
Equacoes do 1o_grau_e_sua_resolucao
Equacoes do 1o_grau_e_sua_resolucaoEquacoes do 1o_grau_e_sua_resolucao
Equacoes do 1o_grau_e_sua_resolucao
 
Congruências Quadráticas
Congruências QuadráticasCongruências Quadráticas
Congruências Quadráticas
 
Sistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitasSistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitas
 
Matrizes
MatrizesMatrizes
Matrizes
 
EQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãoEQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resolução
 
Unid 2- sistemas lineares
Unid 2- sistemas linearesUnid 2- sistemas lineares
Unid 2- sistemas lineares
 

Viewers also liked

Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).Julia Maldonado Garcia
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - DeterminantesClarice Leclaire
 
Projeto sistemas lineares execução
Projeto sistemas lineares execuçãoProjeto sistemas lineares execução
Projeto sistemas lineares execuçãokellyda
 
Aplicações das equações e sistemas lineares
Aplicações das equações e sistemas linearesAplicações das equações e sistemas lineares
Aplicações das equações e sistemas linearesAngélica Brasil
 
Sistemas lineares 0109 (1)
Sistemas lineares 0109 (1)Sistemas lineares 0109 (1)
Sistemas lineares 0109 (1)Carlos Spolaor
 
Função modular propriedades
Função modular   propriedadesFunção modular   propriedades
Função modular propriedadesPéricles Penuel
 
Funcao modular
Funcao modularFuncao modular
Funcao modularcon_seguir
 
www.AulasParticulares.Info - Matemática - Probabilidade
www.AulasParticulares.Info - Matemática -  Probabilidadewww.AulasParticulares.Info - Matemática -  Probabilidade
www.AulasParticulares.Info - Matemática - ProbabilidadeAulasPartInfo
 
Brilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - SedeBrilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - SedeIsmael Mariano Vieira
 
Matrizes e determinantes
Matrizes e determinantesMatrizes e determinantes
Matrizes e determinantesMarcieleEuzebio
 
Mat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° grausMat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° graustrigono_metria
 
Função modular
Função modularFunção modular
Função modularISJ
 
Determinantes
DeterminantesDeterminantes
DeterminantesLurdes
 
Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesslidericardinho
 

Viewers also liked (20)

Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).Matemática - Matrizes e Determinantes (Pt 1).
Matemática - Matrizes e Determinantes (Pt 1).
 
Matematica
MatematicaMatematica
Matematica
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Determinantes
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Determinantes
 
Função modular
Função modularFunção modular
Função modular
 
Projeto sistemas lineares execução
Projeto sistemas lineares execuçãoProjeto sistemas lineares execução
Projeto sistemas lineares execução
 
Aplicações das equações e sistemas lineares
Aplicações das equações e sistemas linearesAplicações das equações e sistemas lineares
Aplicações das equações e sistemas lineares
 
Sistemas lineares 0109 (1)
Sistemas lineares 0109 (1)Sistemas lineares 0109 (1)
Sistemas lineares 0109 (1)
 
Função modular propriedades
Função modular   propriedadesFunção modular   propriedades
Função modular propriedades
 
Função modular
Função modularFunção modular
Função modular
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
 
Matrizes determinantes
Matrizes determinantesMatrizes determinantes
Matrizes determinantes
 
www.AulasParticulares.Info - Matemática - Probabilidade
www.AulasParticulares.Info - Matemática -  Probabilidadewww.AulasParticulares.Info - Matemática -  Probabilidade
www.AulasParticulares.Info - Matemática - Probabilidade
 
Brilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - SedeBrilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - Sede
 
Matrizes e determinantes
Matrizes e determinantesMatrizes e determinantes
Matrizes e determinantes
 
Mat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° grausMat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° graus
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
Função modular
Função modularFunção modular
Função modular
 
Determinantes
DeterminantesDeterminantes
Determinantes
 
Razões especiais 05032013
Razões especiais 05032013Razões especiais 05032013
Razões especiais 05032013
 
Matrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslinearesMatrizes determinantes-sistemaslineares
Matrizes determinantes-sistemaslineares
 

Similar to Determinantes Sistemas Lineares

Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]AUTONOMO
 
www.aulasapoio.com - Matemática - Determinantes
www.aulasapoio.com  - Matemática -  Determinanteswww.aulasapoio.com  - Matemática -  Determinantes
www.aulasapoio.com - Matemática - DeterminantesAulas Apoio
 
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes
www.AulasDeMatematicaApoio.com.br - Matemática - DeterminantesBeatriz Góes
 
www.professoraparticularapoio.com.br -Matemática - Determinantes
www.professoraparticularapoio.com.br -Matemática -  Determinanteswww.professoraparticularapoio.com.br -Matemática -  Determinantes
www.professoraparticularapoio.com.br -Matemática - DeterminantesPatrícia Morais
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - DeterminanteAulas De Matemática Apoio
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - DeterminantesAulasEnsinoMedio
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - DeterminantesAulasEnsinoMedio
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3diacavip
 
Ita2011 3dia
Ita2011 3diaIta2011 3dia
Ita2011 3diacavip
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes resIsabella Silva
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes resIsabella Silva
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoOtávio Sales
 

Similar to Determinantes Sistemas Lineares (20)

Determinantes
DeterminantesDeterminantes
Determinantes
 
Determinantes - 2º B
Determinantes - 2º BDeterminantes - 2º B
Determinantes - 2º B
 
Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]Determinantes sistemas lineares [modo de compatibilidade]
Determinantes sistemas lineares [modo de compatibilidade]
 
www.aulasapoio.com - Matemática - Determinantes
www.aulasapoio.com  - Matemática -  Determinanteswww.aulasapoio.com  - Matemática -  Determinantes
www.aulasapoio.com - Matemática - Determinantes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes www.AulasDeMatematicaApoio.com.br  - Matemática - Determinantes
www.AulasDeMatematicaApoio.com.br - Matemática - Determinantes
 
www.professoraparticularapoio.com.br -Matemática - Determinantes
www.professoraparticularapoio.com.br -Matemática -  Determinanteswww.professoraparticularapoio.com.br -Matemática -  Determinantes
www.professoraparticularapoio.com.br -Matemática - Determinantes
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
 
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
www.AulasEnsinoMedio.com.br - - Matemática -  Determinanteswww.AulasEnsinoMedio.com.br - - Matemática -  Determinantes
www.AulasEnsinoMedio.com.br - - Matemática - Determinantes
 
Aula 03 determinantes
Aula 03   determinantesAula 03   determinantes
Aula 03 determinantes
 
Matrizes
MatrizesMatrizes
Matrizes
 
2 ano matrizes 2010
2 ano   matrizes 20102 ano   matrizes 2010
2 ano matrizes 2010
 
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
Apostila de matrizes (9 páginas, 40 questões, com gabarito)Apostila de matrizes (9 páginas, 40 questões, com gabarito)
Apostila de matrizes (9 páginas, 40 questões, com gabarito)
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3dia
 
Ita2011 3dia
Ita2011 3diaIta2011 3dia
Ita2011 3dia
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
 
Matrizes e determinantes res
Matrizes e determinantes resMatrizes e determinantes res
Matrizes e determinantes res
 
Aulaomit
AulaomitAulaomit
Aulaomit
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabarito
 
Ita02m
Ita02mIta02m
Ita02m
 

More from ISJ

Jogos lavras
Jogos lavrasJogos lavras
Jogos lavrasISJ
 
Convite
ConviteConvite
ConviteISJ
 
Convite
ConviteConvite
ConviteISJ
 
Convite
ConviteConvite
ConviteISJ
 
7º ano cap 23 mamíferos
7º ano cap 23  mamíferos7º ano cap 23  mamíferos
7º ano cap 23 mamíferosISJ
 
7º ano cap 22 as aves
7º ano cap 22 as aves7º ano cap 22 as aves
7º ano cap 22 as avesISJ
 
Will e going to 1º ano -4º bimestre
Will e going to   1º ano -4º bimestreWill e going to   1º ano -4º bimestre
Will e going to 1º ano -4º bimestreISJ
 
Relative pronouns 8ª série - 4º bimestre
Relative pronouns   8ª série - 4º bimestreRelative pronouns   8ª série - 4º bimestre
Relative pronouns 8ª série - 4º bimestreISJ
 
8ª série make -let - be allowed
8ª série   make -let - be allowed8ª série   make -let - be allowed
8ª série make -let - be allowedISJ
 
4º bimestre 3º ano had better
4º bimestre   3º ano had better4º bimestre   3º ano had better
4º bimestre 3º ano had betterISJ
 
7º ano cap 17 artrópodes
7º ano cap 17  artrópodes7º ano cap 17  artrópodes
7º ano cap 17 artrópodesISJ
 
7º ano cap 16 moluscos
7º ano cap 16   moluscos7º ano cap 16   moluscos
7º ano cap 16 moluscosISJ
 
7º ano cap 16 anelideos
7º ano cap 16   anelideos7º ano cap 16   anelideos
7º ano cap 16 anelideosISJ
 
7º ano cap 18 equinodermos
7º ano  cap 18 equinodermos7º ano  cap 18 equinodermos
7º ano cap 18 equinodermosISJ
 
Relative pronouns 3º ano - 3º bimestre
Relative pronouns   3º ano - 3º bimestreRelative pronouns   3º ano - 3º bimestre
Relative pronouns 3º ano - 3º bimestreISJ
 
7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintosISJ
 
7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenteradosISJ
 
7º ano cap 14 cnidários 2012
7º ano  cap 14 cnidários 20127º ano  cap 14 cnidários 2012
7º ano cap 14 cnidários 2012ISJ
 
6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da águaISJ
 
6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especialISJ
 

More from ISJ (20)

Jogos lavras
Jogos lavrasJogos lavras
Jogos lavras
 
Convite
ConviteConvite
Convite
 
Convite
ConviteConvite
Convite
 
Convite
ConviteConvite
Convite
 
7º ano cap 23 mamíferos
7º ano cap 23  mamíferos7º ano cap 23  mamíferos
7º ano cap 23 mamíferos
 
7º ano cap 22 as aves
7º ano cap 22 as aves7º ano cap 22 as aves
7º ano cap 22 as aves
 
Will e going to 1º ano -4º bimestre
Will e going to   1º ano -4º bimestreWill e going to   1º ano -4º bimestre
Will e going to 1º ano -4º bimestre
 
Relative pronouns 8ª série - 4º bimestre
Relative pronouns   8ª série - 4º bimestreRelative pronouns   8ª série - 4º bimestre
Relative pronouns 8ª série - 4º bimestre
 
8ª série make -let - be allowed
8ª série   make -let - be allowed8ª série   make -let - be allowed
8ª série make -let - be allowed
 
4º bimestre 3º ano had better
4º bimestre   3º ano had better4º bimestre   3º ano had better
4º bimestre 3º ano had better
 
7º ano cap 17 artrópodes
7º ano cap 17  artrópodes7º ano cap 17  artrópodes
7º ano cap 17 artrópodes
 
7º ano cap 16 moluscos
7º ano cap 16   moluscos7º ano cap 16   moluscos
7º ano cap 16 moluscos
 
7º ano cap 16 anelideos
7º ano cap 16   anelideos7º ano cap 16   anelideos
7º ano cap 16 anelideos
 
7º ano cap 18 equinodermos
7º ano  cap 18 equinodermos7º ano  cap 18 equinodermos
7º ano cap 18 equinodermos
 
Relative pronouns 3º ano - 3º bimestre
Relative pronouns   3º ano - 3º bimestreRelative pronouns   3º ano - 3º bimestre
Relative pronouns 3º ano - 3º bimestre
 
7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos7º ano cap 15 platelmintos e nematelmintos
7º ano cap 15 platelmintos e nematelmintos
 
7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados7º ano cap 14 porferos e celenterados
7º ano cap 14 porferos e celenterados
 
7º ano cap 14 cnidários 2012
7º ano  cap 14 cnidários 20127º ano  cap 14 cnidários 2012
7º ano cap 14 cnidários 2012
 
6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água6º ano cap 15 a água e o tratamento da água
6º ano cap 15 a água e o tratamento da água
 
6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial6º ano cap 14 a água uma subst especial
6º ano cap 14 a água uma subst especial
 

Determinantes Sistemas Lineares

  • 1. DETERMINANTES Definição : Determinante é um número associado a uma matriz quadrada de ordem n x n. Matriz quadrada de ordem 1 Se A é uma matriz quadrada de ordem 1, isto é A = ( a 11 ), o seu determinante será o próprio elemento a 11 . det A = a 11 = a 11 Exemplo.: A = ( 120 )  det A = 120 B = (– 29 )  det A = – 29
  • 2. Matriz quadrada de ordem 2  det A = = a 11  a 22 – a 12  a 21  Produto dos elementos da diagonal principal menos o produto da diagonal secundária. det A = = (–3)  (–5) – (2)  (1) det A = 15 – 2 = 13 det A = 13 A = a 11 a 12 a 21 a 22 a 11 a 12 a 21 a 22 A = – 3 2 1 –5 – 3 2 1 –5
  • 3. Matriz quadrada de ordem 3 Regra de Sarrus : Repete-se as duas primeiras linhas abaixo da terceira linha ou repete-se as duas primeiras colunas após a terceira coluna. Em seguida, calcula-se a soma do produto da diagonal principal com o produto das diagonais paralelas a ela (SDP). Faz-se o mesmo com a diagonal secundária e suas paralelas (SDS). Em seguida, faz-se a diferença desses valores obtidos com as diagonais. (det A = SDP – SDS)
  • 4. a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 a 11 a 12 a 13 a 21 a 22 a 23 det A = SDP – SDI a 11 a 12 a 13 a 11 a 12 a 21 a 22 a 23 a 21 a 22 a 31 a 32 a 33 a 31 a 32 ou SDP = ( a 11  a 22  a 33 + a 21  a 32  a 13 + a 31  a 12  a 23 ) SDS = ( a 13  a 22  a 31 + a 23  a 32  a 11 + a 33  a 12  a 21 )
  • 5. Propriedades dos determinantes 1. Um determinante será nulo quando possuir uma fila formada só por zeros ou duas filas paralelas iguais ou proporcionais det A = = (0)  (5) – (0)  (3) 0 – 0 = = 0 det A = – det A = 0  0 0 3 5 1 3 5 3 0 –5 1 3 5 det A = ( 0 + 45 – 15 ) ( 0 + 45 – 15 )
  • 6. 2. Se trocarmos entre si a posição de duas filas paralelas, o determinante mudará o sinal. det A = – det A = –28  det A = – = – det A = 28  – 1 3 5 3 0 –5 2 1 2 det A = ( 0 + 15 – 30 ) ( 0 – 5 + 18 ) (– 15 ) ( 13 ) 2 1 2 3 0 –5 1 3 5 det A = ( 0 + 18 – 5 ) ( 0 – 30 + 15 ) ( 13 ) ( –15 )
  • 7. 3. Se multiplicarmos umas das filas de uma matriz quadrada por um número k , o seu determinante ficará multiplicado por k . det A = = (10) – (12) = –2 det B = = (30) – (36) = –6 k = 3 det B = k  det A det B = 3  (–2) = –6 2 4 3 5 6 12 3 5
  • 8. 4. Da propriedade 3, decorre que: det ( k  A n ) = k n  det A n .  3  A 2 = det ( 3  A 2 ) = = (90) – (108) = –18 det ( 3  A 2 ) = 3 2  det A 2 = 9  (–2) = –18 k = 3 A 2 = 2 4 3 5 6 12 9 15 6 12 9 15
  • 9. 5. det A = det A T . det A = – det A = –28  det A = – det A T = – det A T = –28  det A T = – 1 3 5 3 0 –5 2 1 2 det A = ( 0 + 15 – 30 ) ( 0 – 5 + 18 ) (– 15 ) ( 13 ) 1 3 2 3 0 1 5 –5 2 det A T = ( 0 – 30 + 15 ) ( 0 – 5 + 18 ) (– 15 ) ( 13 )
  • 10. 6. det ( A n  B n ) = det A  det B B 2 = ; = det ( A n  B n ) = 400 – 392 = 8 det A  det B = (–2)  (–4) = 8 A 2 = 2 4 3 5 3 10 1 2 A 2  B 2 = 2 4 3 5 3 10 1 2  10 28 14 40
  • 11. 7. det I n = 1 det I 3 = 1  8. O determinante de matrizes triangulares e de matrizes diagonais se resume ao produto dos elementos da diagonal principal. det A = 5  (–2)  3 = –30 1 0 0 0 1 0 0 0 1 det I 3 = 5 3 2 0 –2 1 0 0 3 det A =
  • 12. Matriz inversa Seja A uma matriz quadrada de ordem n. Essa matriz possuirá inversa (A –1 ) se, e somente se, seu determinante for diferente de zero. A –1  A = A  A –1 = I  det A  0. 3. Se A possuir inversa, essa será única. 1. Se A 2x2 = a b c d , então : A –1 = d –b – c a det A det A det A det A 2. det A –1 = 1 det A , det A  0
  • 13.
  • 14.
  • 15. 03. (UFSC) Assinale a(s) proposição(ões) correta(s) . (01) Se K = (k ij ) é uma matriz quadrada de ordem 2 dada por k ij = 2 2i + j para i < j e k ij = i 2 + 1 para i > j, então k é uma matriz inversível. k 11 = 1 2 + 1 = 2 k 12 = 2 2(1) + 2 = 2 4 = 16 k 21 = 2 2 + 1 = 5 k 22 = 2 2 + 1 = 5 Det K = 10 – 80 = –70  0  é inversível (01) - correta K = k 11 k 12 k 21 k 22 K = 2 16 5 5
  • 16. (02) Se A e B são matrizes tais que A  B é uma matriz nula, então A é uma matriz nula ou B é uma matriz nula. A  B = 0 não implica em A = 0 ou B = 0. (02) - incorreta (04) Sejam as matrizes M e P, respectivamente de tipos 5x7 e 7x5. Se R = MP, então a matriz R 2 tem 625 elementos. M 5x7  P 7x5 = R 5x5 (A matriz R possui 25 elementos) Logo, a matriz R 2 tem 25 elementos. c.e.p Ordem n (04) - incorreta
  • 17. (08) Chamamos de “traço de L” e anotamos Tr(L) a soma do elementos da diagonal principal de uma matriz quadrada L; então Tr(L) = Tr(L T ). A transposta de uma matriz não altera sua diagonal principal. (08) - correta GABARITO QUESTÃO 03 : 01 + 08 = 09
  • 18. SISTEMAS LINEARES Equação Linear é uma equação de forma: a 1  x 1 + a 2  x 2 + a 3  x 3 + ... + a n  x n = b Portanto, um sistema será linear quando for composto de equações lineares. linear não-linear 2x + 3y = 5 x – y = 2 2x 2 + 3y = 5 x – y = 2 2x + 3y – z = 5 x – y + z = 2 – 5x – 3y + 4z = 10 2xy + 3y = 5 x – y = 2
  • 19. Observações:  1. Forma matricial Forma matricial completa 2. A matriz constituída apenas pelos coeficientes é denominanda matriz principal . 3x + 2y + z = 1 x – y + 3z = 2 5x + 2y + z = 7 3 2 1 1 –1 3 5 2 1 x y z 1 2 7 = . 3 2 1 1 1 –1 3 2 5 2 1 7
  • 20. 3. Se o número de equações é igual ao número de variáveis e o determinante da matriz principal (  ) for diferente de zero,o sistema recebe o nome de normal . 4. Se todos os termos independentes são nulos (0), o sistem é chamado de homogêneo . 2x + 3y = 0 x – y = 0
  • 21. Método de Cramer a 11  x 1 + a 12  x 2 + a 13  x 3 + ... + a 1n  x n = b 1 a 21  x 1 + a 22  x 2 + a 23  x 3 + ... + a 2n  x n = b 2 a n1  x 1 + a n2  x 2 + a n3  x 3 + ... + a nn  x n = b n . . . a 11 a 12 a 13 ... a 1n a 21 a 22 a 23 ... a 2n . . . . . . a n1 a n2 a n3 ... a nn  =
  • 22. b 1 a 12 a 13 ... a 1n b 2 a 22 a 23 ... a 2n . . . . . . b n a n2 a n3 ... a nn  x 1 = a 11 b 1 a 13 ... a 1n a 21 b 2 a 23 ... a 2n . . . . . . a n1 b n a n3 ... a nn  x 2 = a 11 a 12 b 1 ... a 1n a 21 a 22 b 2 ... a 2n . . . . . . a n1 a n2 b n ... a nn  x 3 = . . .
  • 23. Se   0 temos: a 11 a 12 a 13 ... b 1 a 21 a 22 a 23 ... b 2 . . . . . . a n1 a n2 a n3 ... b n  x n = . . .  x 1 x 1 =   x 2 x 2 =   x 3 x 3 =   x n x n =  , , , ... ,
  • 24. S = {(x, y)} S = {(2, 1)} Exemplo:  = 3 2 1 -1 = – 3 – 2 = – 5  x = 8 2 1 -1 = – 8 – 2 = – 10  y = 3 8 1 1 = 3 – 8 = – 5 3x + 2y = 8 x – y = 1 x =  x  = – 10 – 5 = 2 y =  y  = – 5 – 5 = 1
  • 25. DISCUSSÃO DE SISTEMAS Solução única   0 Infinitas soluções  =  x =  y =  z = 0 Infinitas soluções  = 0 e  x  0 ou  y  0 ou  z  0. Sistema linear Possível Impossível (sem solução) determinado indeterminado
  • 26. Se o sistema linear for homogêneo: Possível e determinado (   0 , S = {(0, 0, 0, ..., 0)} ) Solução trivial Possível e indeterminado (  = 0 ) (Além da trivial, admitirá soluções próprias)
  • 27. 04. Três amigos sobem em uma balança de dois em dois. Antônio e Beatriz somam 30 kg e Beatriz e Caio, 28 kg. Sabe-se que Antônio e Caio pesam juntos 34 kg. Quanto pesa Beatriz? (–) 2B = 24 B = 12 Beatriz tem 12 kg. A + B = 30 B + C = 28 A + C = 34 A + B = 30 -A + B = –6 +
  • 28.
  • 29. (2)  (3) Impossível para qualquer valor de m. x + y + z = 1 2x + 2y + 2z = m 3x + 3y + 3z = 4 x + y + z = 1 x + y + z = 4 3 x + y + z = m 2 x + y + z = 1 x + y + z = 4 3 B
  • 30. Acesse as nossas páginas e confira uma infinidade de simulados de Matemática e de outras matérias! www.vestibular1.com.br Vestibular1 – O Número 1 em vestibulares! A melhor ajuda ao vestibulando na Internet e em todo o Brasil. O Portal que mais aprova! Confira! Apoio total aos vestibulandos! Autor desta Aula: ANALBERTO SCHOT - professor BELL. Criciúma - SC