SlideShare a Scribd company logo
1 of 40
Calor de Formación : Es el cambio térmico que se utiliza para formar un mol de una sustancia. Entalpia : 	  Magnitud termodinámica cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, o sea, la cantidad de energía que un sistema puede intercambiar con su entorno.Endotérmica :  La entalpia es Positiva, el compuesto recibe energia.     Exotérmica : Aquí la Entalpia es Negativa ya que el compuesto libera energia .
Alcanos : Tienen sólo átomos : carbono e hidrógeno Muestran una reactividad relativamente baja, porque sus enlaces de carbono son relativamente estables y no pueden ser fácilmente rotos. Su formula es:     CnH2n+2
Cicloalcanos Son hidrocarburos  saturados, cuyo esqueleto es formado únicamente por átomos de carbono  unidos entre ellos con enlaces simples en forma de anillo. Su fórmula genérica es CnH2n. Por fórmula son isómeros de los alquenos. También existen compuestos que contienen varios anillos, los compuestos policíclicos.
La energía total de la molécula se calcula como  suma de energías de diferentes movimientos que están presentes en la molécula. Campos de Fuerza : Un conjunto de parámetros y ecuaciones  usadas en simulaciones de mecánica molecular. La MM trata la molécula como si fuera un conjunto de átomos o puntos en el espacio gobernados por una serie de potenciales de mecánica clásica.
MM4 : Es el último campo de fuerza propuesto por el grupo de Allinger en 1996. En él se han modificado algunos de los términos energéticos que aparecían en las anteriores versiones. La energía viene dada como un sumatorio de términos energéticos. Y este considera efectos químicos como la electronegatividad y la hiperconjuncion.
Términos energéticos
Los términos energéticos se pueden dividir en tres grandes grupos: 1.-Campo de fuerza de valencia (valence force field): son términos que dependen directamente de los enlaces químicos.
Tensión (bond-stretching): Este término tiene en cuenta la energía asociada a la tensión de un enlace entre dos átomos, que debe depender de la distancia interatómica y de la constante de fuerza del enlace. Flexión (angle-bending potencial): Este término está relacionado con el ángulo de enlace.
Torsión (torsional enegries): Este término está relacionado con el ángulo diedro o ángulo que forman dos planos definidos por cuatro átomos de la molécula (ω). Flexión fuera del plano: Este término refleja el movimiento fuera del plano que puede experimentar un centro trigonal, es decir, un átomo que está unido a tres átomos, todos ellos en el mismo plano.
2.Interacciones a larga distancia  (no valencia)
Término de Van der Waals: Este término incluye las interacciones a larga distancia entre dos átomos que no se encuentran unidos directamente. Dipolo-dipolo: este término es debido a las interacciones de los posibles momentos dipolar es presentes en la molécula.
3. Términos de entrecruzamiento (cross-terms):
Tensión-Flexión Este término indica la interacción entre la tensión (alargamiento y acortamiento de dos enlaces) con la flexión (modificación del ángulo que forman esos dos enlaces) Los valores de r1 y  r2 son las distancias de enlace en la molécula y standard. Tensión-Torsión Este término representa la interacción entre la tensión y la torsión.
En el Calor de Formación de Los Alcanos  Cuando la mecánica molecular clásica empezó se podían calcular las energías de enlace de manera general pero con el método que se empleaba no se podían ver , los cambios presentados  ni los movimientos que estas hacían.
Flexión-Flexión Este término también se introduce para predecir correctamente los espectros de vibración.
Los cálculos fueron realizados con los alcanos ya que constituyen la clase mas simple de  compuesto porque presentan dos clases de enlace (carbono-carbono y carbono-hidrogeno).
En general MM4 produjo la información experimental sobre los calores de formación con una exactitud química. Actualmente existen programas que presentan una interfase gráfica que permite la construcción de la molécula de una forma sencilla. Asimismo permiten determinar de un modo automático los tipos de átomos que forman la molécula.
La energía de una molécula y los calores de formación se puede calcular de manera directa con la ecuación de Schrödinger. Se  ocuparon métodos empíricos y mecánica cuántica para tener resultados mas exactos y confiables. Se quiere mejorar la mecánica cuántica para obtener resultados exactos y precisos de las moléculas teniendo un marco de la mecánica molecular y así tener los calores de formación.
La ventaja de este método es que  debe trabajar bien con cualquier combinación de átomos. El procedimiento de Wiberg y Schleyer se puede aplicar a los primeros hidrocarburos para extenderlos a las moléculas cercanas.  Cuando este trabajo se inicio habían ciertas limitaciones en energía de la computadora y se empleo el método de hartree-fock para medir la energía, y Schroedinger creo la formula para el calculo de la energía y calor de una molécula.
En eseentonces los resultado de hartree-fock eran buenos mas no los exactos.Luego se utilizo el sistema de la base 6-31G comparado en exactitud los números experimentales para obtener los calores de formación. Después se utilizo hartree-fock a nivel  B3LYP obteniendo mejores resultados que los métodos anteriores sin embargo tenia algunos errores. La idea de este proyecto es mejorar los métodos de la mecánica cuántica para reducir los errores en los resultados, utilizando parámetros y el método de Wiberg y Schleyer(estudio de las energías de la molécula).
Los cálculos que se empezaron eran con moléculas estacionarias, el problema era que al aplicarlos a la realidad estas moléculas están en movimiento vibratorio. El modelo de Benzon no tenia en cuenta esto ya que  se pensaba que con la parametrizacion se solucionaría el problema. Las moléculas estaban en movimiento, rotación y traslación, por lo que era necesario agregar energía adicional.
La parametrización: Consiste en tomar un conjunto de moléculas (de geometría y energía conocidas experimentalmente) e ir modificando las constantes arbitrarias (parámetros) que aparecen en los diferentes potenciales hasta reproducir lo mejor posible la geometría, energía y otros valores de ese conjunto de moléculas tomadas como modelo. Posteriormente, una vez parametrizado el método, se podrán predecir propiedades de otras moléculas.
La parametrizacion: Consiste en tomar un conjunto de moléculas (de geometría y energía conocidas experimentalmente) e ir modificando las constantes arbitrarias (parámetros) que aparecen en los diferentes potenciales hasta reproducir lo mejor posible la geometría, energía y otros valores de ese conjunto de moléculas tomadas como modelo. Posteriormente, una vez parametrizado el método, se podrán predecir propiedades de otras moléculas.
En la parametrizacion es muy importante la elección adecuada del conjunto de moléculas. Si el conjunto es relativamente pequeño, un valor experimental erróneo puede producir serias distorsiones en los resultados. Esto se puede evitar si se emplean conjuntos muy grandes con lo cual los errores se promedian y disminuye su importancia.
Tabla 1: Primeros 19 compuestos
Continuación de Tabla 1: Siguientes 20
Continuación de la Tabla 1: siguientes 19
INSTITUTO TECNOLOGICO DE TAPACHULAINTEGRANTES DEL EQUIPO:ROCIO GUADALUPE FLORES LOPEZKRISTEL ANAHY CERVANTES SOLORZANOANA SILVIA VELAZQUEZ AREVALOJHONATAN ISRAEL AGUILAR GARCIAMATERIA:QUIMICATEMA:ON THE HEATS OF FORMATION OF ALKANES
Calores de formacion
Calores de formacion
Calores de formacion
Calores de formacion

More Related Content

What's hot

Energía de activación
Energía de activaciónEnergía de activación
Energía de activación
StalinChelaH
 
Trabajo de fy q tema 15
Trabajo de  fy q tema 15Trabajo de  fy q tema 15
Trabajo de fy q tema 15
crisanto12
 
Teoría electrónica de valencia
Teoría electrónica de valenciaTeoría electrónica de valencia
Teoría electrónica de valencia
Frederyck1234
 
Energía mecánica
Energía mecánicaEnergía mecánica
Energía mecánica
Jair Carlos
 
Leyes de las combinaciones quimicas
Leyes de las combinaciones quimicasLeyes de las combinaciones quimicas
Leyes de las combinaciones quimicas
DavidSPZGZ
 

What's hot (19)

Energía de activación
Energía de activaciónEnergía de activación
Energía de activación
 
Bioenergetica
BioenergeticaBioenergetica
Bioenergetica
 
Anexo 2.1. Sobre la regla de Madelung y el diagrama de Moeller
Anexo 2.1. Sobre la regla de Madelung y el diagrama de MoellerAnexo 2.1. Sobre la regla de Madelung y el diagrama de Moeller
Anexo 2.1. Sobre la regla de Madelung y el diagrama de Moeller
 
Conversión de trabajo en calor
Conversión de trabajo en calorConversión de trabajo en calor
Conversión de trabajo en calor
 
Trabajo de fy q tema 15
Trabajo de  fy q tema 15Trabajo de  fy q tema 15
Trabajo de fy q tema 15
 
actividad i.docx
actividad i.docxactividad i.docx
actividad i.docx
 
Presentaciónqca dif
Presentaciónqca difPresentaciónqca dif
Presentaciónqca dif
 
Teoría electrónica de valencia
Teoría electrónica de valenciaTeoría electrónica de valencia
Teoría electrónica de valencia
 
Química
QuímicaQuímica
Química
 
Balanceo de reacciones químicas
Balanceo de reacciones químicasBalanceo de reacciones químicas
Balanceo de reacciones químicas
 
2.1. Orbitales de los átomos polielectrónicos
2.1. Orbitales de los átomos polielectrónicos 2.1. Orbitales de los átomos polielectrónicos
2.1. Orbitales de los átomos polielectrónicos
 
Bioenergetica. Termodinamica. Clase de Bioquimica
Bioenergetica. Termodinamica. Clase de BioquimicaBioenergetica. Termodinamica. Clase de Bioquimica
Bioenergetica. Termodinamica. Clase de Bioquimica
 
Entalpia
EntalpiaEntalpia
Entalpia
 
Desempeño d1 energia trabajo-calor
Desempeño d1   energia trabajo-calorDesempeño d1   energia trabajo-calor
Desempeño d1 energia trabajo-calor
 
Energía mecánica
Energía mecánicaEnergía mecánica
Energía mecánica
 
Reactividad
ReactividadReactividad
Reactividad
 
Leyes de las combinaciones quimicas
Leyes de las combinaciones quimicasLeyes de las combinaciones quimicas
Leyes de las combinaciones quimicas
 
Ecuacion de-nernst
Ecuacion de-nernstEcuacion de-nernst
Ecuacion de-nernst
 
Bioenergética
BioenergéticaBioenergética
Bioenergética
 

Similar to Calores de formacion

Guia 01 introduccion_a_los_calculos_basicos
Guia 01 introduccion_a_los_calculos_basicosGuia 01 introduccion_a_los_calculos_basicos
Guia 01 introduccion_a_los_calculos_basicos
Jose Lugo
 
Aspectos físico químicos de sustancias
Aspectos físico químicos de sustanciasAspectos físico químicos de sustancias
Aspectos físico químicos de sustancias
Adriana Medina
 
Fertilizantes parte 3
Fertilizantes parte 3Fertilizantes parte 3
Fertilizantes parte 3
Victor Bahena
 
Fertilizantes parte 3
Fertilizantes parte 3Fertilizantes parte 3
Fertilizantes parte 3
Victor Bahena
 
Equilibrio quimico
Equilibrio quimicoEquilibrio quimico
Equilibrio quimico
karoolina22
 
Bioenergetica
BioenergeticaBioenergetica
Bioenergetica
FMVZ
 

Similar to Calores de formacion (20)

Guia 01 introduccion_a_los_calculos_basicos
Guia 01 introduccion_a_los_calculos_basicosGuia 01 introduccion_a_los_calculos_basicos
Guia 01 introduccion_a_los_calculos_basicos
 
Bioenergética
BioenergéticaBioenergética
Bioenergética
 
Unidad1NocionesBasicas.ppt
Unidad1NocionesBasicas.pptUnidad1NocionesBasicas.ppt
Unidad1NocionesBasicas.ppt
 
Aspectos físico químicos de sustancias
Aspectos físico químicos de sustanciasAspectos físico químicos de sustancias
Aspectos físico químicos de sustancias
 
fisicoquimica I 2020. 2do cohorte.ppt
fisicoquimica I 2020. 2do cohorte.pptfisicoquimica I 2020. 2do cohorte.ppt
fisicoquimica I 2020. 2do cohorte.ppt
 
GASES LECTURA 18-G1.pdf
GASES LECTURA 18-G1.pdfGASES LECTURA 18-G1.pdf
GASES LECTURA 18-G1.pdf
 
LABORATORIO FISICOQUIMICA 1
LABORATORIO FISICOQUIMICA 1LABORATORIO FISICOQUIMICA 1
LABORATORIO FISICOQUIMICA 1
 
Fertilizantes parte 3
Fertilizantes parte 3Fertilizantes parte 3
Fertilizantes parte 3
 
Fertilizantes parte 3
Fertilizantes parte 3Fertilizantes parte 3
Fertilizantes parte 3
 
Equilibrio quimico
Equilibrio quimicoEquilibrio quimico
Equilibrio quimico
 
Equilibrio quimico
Equilibrio quimicoEquilibrio quimico
Equilibrio quimico
 
Sistemas Termo.pptx
Sistemas Termo.pptxSistemas Termo.pptx
Sistemas Termo.pptx
 
Unidad 3. Procesos activados con temperatura y difusión de los sólidos
Unidad 3. Procesos activados con temperatura y difusión de los sólidosUnidad 3. Procesos activados con temperatura y difusión de los sólidos
Unidad 3. Procesos activados con temperatura y difusión de los sólidos
 
Bioenergetica
BioenergeticaBioenergetica
Bioenergetica
 
Tarea equilibrio químico
Tarea equilibrio químicoTarea equilibrio químico
Tarea equilibrio químico
 
SEMANA 11 GRUPO 7-quimica general..pptx
SEMANA 11 GRUPO 7-quimica general..pptxSEMANA 11 GRUPO 7-quimica general..pptx
SEMANA 11 GRUPO 7-quimica general..pptx
 
Semana#9
Semana#9Semana#9
Semana#9
 
Reacciones y ecuaciones
Reacciones y ecuacionesReacciones y ecuaciones
Reacciones y ecuaciones
 
Equilibrio quimico 1
Equilibrio quimico 1Equilibrio quimico 1
Equilibrio quimico 1
 
Conservación de la energía
Conservación de la energíaConservación de la energía
Conservación de la energía
 

Recently uploaded

Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
EliaHernndez7
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
patriciaines1993
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
MiNeyi1
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Francisco158360
 

Recently uploaded (20)

Supuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docxSupuestos_prácticos_funciones.docx
Supuestos_prácticos_funciones.docx
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
LABERINTOS DE DISCIPLINAS DEL PENTATLÓN OLÍMPICO MODERNO. Por JAVIER SOLIS NO...
 
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docxPLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
PLAN DE REFUERZO ESCOLAR MERC 2024-2.docx
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 4ºESO
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdfSELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
SELECCIÓN DE LA MUESTRA Y MUESTREO EN INVESTIGACIÓN CUALITATIVA.pdf
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
🦄💫4° SEM32 WORD PLANEACIÓN PROYECTOS DARUKEL 23-24.docx
 
Proyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdfProyecto de aprendizaje dia de la madre MINT.pdf
Proyecto de aprendizaje dia de la madre MINT.pdf
 
Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024Prueba libre de Geografía para obtención título Bachillerato - 2024
Prueba libre de Geografía para obtención título Bachillerato - 2024
 
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
6.-Como-Atraer-El-Amor-01-Lain-Garcia-Calvo.pdf
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJOACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
ACTIVIDAD DIA DE LA MADRE FICHA DE TRABAJO
 
Infografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdfInfografía EE con pie del 2023 (3)-1.pdf
Infografía EE con pie del 2023 (3)-1.pdf
 
Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
SESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.docSESION DE PERSONAL SOCIAL.  La convivencia en familia 22-04-24  -.doc
SESION DE PERSONAL SOCIAL. La convivencia en familia 22-04-24 -.doc
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdfFeliz Día de la Madre - 5 de Mayo, 2024.pdf
Feliz Día de la Madre - 5 de Mayo, 2024.pdf
 

Calores de formacion

  • 1. Calor de Formación : Es el cambio térmico que se utiliza para formar un mol de una sustancia. Entalpia : Magnitud termodinámica cuya variación expresa una medida de la cantidad de energía absorbida o cedida por un sistema termodinámico, o sea, la cantidad de energía que un sistema puede intercambiar con su entorno.Endotérmica : La entalpia es Positiva, el compuesto recibe energia. Exotérmica : Aquí la Entalpia es Negativa ya que el compuesto libera energia .
  • 2. Alcanos : Tienen sólo átomos : carbono e hidrógeno Muestran una reactividad relativamente baja, porque sus enlaces de carbono son relativamente estables y no pueden ser fácilmente rotos. Su formula es: CnH2n+2
  • 3. Cicloalcanos Son hidrocarburos saturados, cuyo esqueleto es formado únicamente por átomos de carbono unidos entre ellos con enlaces simples en forma de anillo. Su fórmula genérica es CnH2n. Por fórmula son isómeros de los alquenos. También existen compuestos que contienen varios anillos, los compuestos policíclicos.
  • 4. La energía total de la molécula se calcula como suma de energías de diferentes movimientos que están presentes en la molécula. Campos de Fuerza : Un conjunto de parámetros y ecuaciones usadas en simulaciones de mecánica molecular. La MM trata la molécula como si fuera un conjunto de átomos o puntos en el espacio gobernados por una serie de potenciales de mecánica clásica.
  • 5. MM4 : Es el último campo de fuerza propuesto por el grupo de Allinger en 1996. En él se han modificado algunos de los términos energéticos que aparecían en las anteriores versiones. La energía viene dada como un sumatorio de términos energéticos. Y este considera efectos químicos como la electronegatividad y la hiperconjuncion.
  • 7. Los términos energéticos se pueden dividir en tres grandes grupos: 1.-Campo de fuerza de valencia (valence force field): son términos que dependen directamente de los enlaces químicos.
  • 8. Tensión (bond-stretching): Este término tiene en cuenta la energía asociada a la tensión de un enlace entre dos átomos, que debe depender de la distancia interatómica y de la constante de fuerza del enlace. Flexión (angle-bending potencial): Este término está relacionado con el ángulo de enlace.
  • 9. Torsión (torsional enegries): Este término está relacionado con el ángulo diedro o ángulo que forman dos planos definidos por cuatro átomos de la molécula (ω). Flexión fuera del plano: Este término refleja el movimiento fuera del plano que puede experimentar un centro trigonal, es decir, un átomo que está unido a tres átomos, todos ellos en el mismo plano.
  • 10. 2.Interacciones a larga distancia (no valencia)
  • 11. Término de Van der Waals: Este término incluye las interacciones a larga distancia entre dos átomos que no se encuentran unidos directamente. Dipolo-dipolo: este término es debido a las interacciones de los posibles momentos dipolar es presentes en la molécula.
  • 12. 3. Términos de entrecruzamiento (cross-terms):
  • 13. Tensión-Flexión Este término indica la interacción entre la tensión (alargamiento y acortamiento de dos enlaces) con la flexión (modificación del ángulo que forman esos dos enlaces) Los valores de r1 y r2 son las distancias de enlace en la molécula y standard. Tensión-Torsión Este término representa la interacción entre la tensión y la torsión.
  • 14. En el Calor de Formación de Los Alcanos Cuando la mecánica molecular clásica empezó se podían calcular las energías de enlace de manera general pero con el método que se empleaba no se podían ver , los cambios presentados ni los movimientos que estas hacían.
  • 15. Flexión-Flexión Este término también se introduce para predecir correctamente los espectros de vibración.
  • 16. Los cálculos fueron realizados con los alcanos ya que constituyen la clase mas simple de compuesto porque presentan dos clases de enlace (carbono-carbono y carbono-hidrogeno).
  • 17. En general MM4 produjo la información experimental sobre los calores de formación con una exactitud química. Actualmente existen programas que presentan una interfase gráfica que permite la construcción de la molécula de una forma sencilla. Asimismo permiten determinar de un modo automático los tipos de átomos que forman la molécula.
  • 18. La energía de una molécula y los calores de formación se puede calcular de manera directa con la ecuación de Schrödinger. Se ocuparon métodos empíricos y mecánica cuántica para tener resultados mas exactos y confiables. Se quiere mejorar la mecánica cuántica para obtener resultados exactos y precisos de las moléculas teniendo un marco de la mecánica molecular y así tener los calores de formación.
  • 19. La ventaja de este método es que debe trabajar bien con cualquier combinación de átomos. El procedimiento de Wiberg y Schleyer se puede aplicar a los primeros hidrocarburos para extenderlos a las moléculas cercanas. Cuando este trabajo se inicio habían ciertas limitaciones en energía de la computadora y se empleo el método de hartree-fock para medir la energía, y Schroedinger creo la formula para el calculo de la energía y calor de una molécula.
  • 20. En eseentonces los resultado de hartree-fock eran buenos mas no los exactos.Luego se utilizo el sistema de la base 6-31G comparado en exactitud los números experimentales para obtener los calores de formación. Después se utilizo hartree-fock a nivel B3LYP obteniendo mejores resultados que los métodos anteriores sin embargo tenia algunos errores. La idea de este proyecto es mejorar los métodos de la mecánica cuántica para reducir los errores en los resultados, utilizando parámetros y el método de Wiberg y Schleyer(estudio de las energías de la molécula).
  • 21. Los cálculos que se empezaron eran con moléculas estacionarias, el problema era que al aplicarlos a la realidad estas moléculas están en movimiento vibratorio. El modelo de Benzon no tenia en cuenta esto ya que se pensaba que con la parametrizacion se solucionaría el problema. Las moléculas estaban en movimiento, rotación y traslación, por lo que era necesario agregar energía adicional.
  • 22. La parametrización: Consiste en tomar un conjunto de moléculas (de geometría y energía conocidas experimentalmente) e ir modificando las constantes arbitrarias (parámetros) que aparecen en los diferentes potenciales hasta reproducir lo mejor posible la geometría, energía y otros valores de ese conjunto de moléculas tomadas como modelo. Posteriormente, una vez parametrizado el método, se podrán predecir propiedades de otras moléculas.
  • 23. La parametrizacion: Consiste en tomar un conjunto de moléculas (de geometría y energía conocidas experimentalmente) e ir modificando las constantes arbitrarias (parámetros) que aparecen en los diferentes potenciales hasta reproducir lo mejor posible la geometría, energía y otros valores de ese conjunto de moléculas tomadas como modelo. Posteriormente, una vez parametrizado el método, se podrán predecir propiedades de otras moléculas.
  • 24. En la parametrizacion es muy importante la elección adecuada del conjunto de moléculas. Si el conjunto es relativamente pequeño, un valor experimental erróneo puede producir serias distorsiones en los resultados. Esto se puede evitar si se emplean conjuntos muy grandes con lo cual los errores se promedian y disminuye su importancia.
  • 25. Tabla 1: Primeros 19 compuestos
  • 26. Continuación de Tabla 1: Siguientes 20
  • 27. Continuación de la Tabla 1: siguientes 19
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36. INSTITUTO TECNOLOGICO DE TAPACHULAINTEGRANTES DEL EQUIPO:ROCIO GUADALUPE FLORES LOPEZKRISTEL ANAHY CERVANTES SOLORZANOANA SILVIA VELAZQUEZ AREVALOJHONATAN ISRAEL AGUILAR GARCIAMATERIA:QUIMICATEMA:ON THE HEATS OF FORMATION OF ALKANES