SlideShare a Scribd company logo
1 of 16
Download to read offline
KUWAIT
           SECTION

December
NEWSLETTER 2009




INSIDE THIS ISSUE                           FROM SECTION PRESIDENT’S DESK
                                            I am pleased to release the December 2009 Newsletter
                                            of ISA - Kuwait Section.

    TECHNICAL WINDOW                        We invite ISA Members and other Automation
                                            Professionals to contribute articles to be published in this
                                            newsletter.
    MEMBERS AREA
                                            Please send your feedback about your expectations of
                                            ISA - Kuwait Section to
    PRODUCT REVIEW
                                            kuwait-section@isa-online.org

                                            Best Regards


                                            Ali H Al Hashemi
                                            President
                                            ISA - Kuwait Section


                       FOR PRIVATE CIRCULATION ONLY
ISA KUWAIT SECTION OFFICE

Ali H Al Hashemi
President
Kuwait National Petroleum Co
a.hashemi@knpc.com

Ali H. Alawadhi
Vice President
Kuwait National Petroleum Co

ah.awadhi015@knpc.com

PP Muthu
Secretary
Rezayat Trading Co Ltd
Office 24816836 Ext. 146
Cell 9437119
muthu@rezayatkwt.com

C. Dakshinamurthy
Treasurer
Kuwait Oil Co
Office 23822713
dakshinamurthy@kockw.com

Chandra Sekhar, S
Membership Chair
Kuwait Oil Co
chandras@kockw.com



Editorial Board
Shemej Kumar K.K                P.P Muthu                      Biju Thomas
SKKKumar@kockw.com              muthu@rezayatkwt.com           bijuthomas@eth.com

Drajat Satriotomo               Gijo K Augustine
dsatriotomo@kockw.com           gk.augustine@knpc.com



Invitation to Members

We invite interested ISA members to write         We invite IA&C Manufacturers and their
anything about Automation to be published         representatives to use this newsletter to
in this monthly Newsletter.                       advertise their product offerings.
When is a Safety Integrity Level (SIL) Rating of a Valve Required?

Riyaz Ali
Director, Instruments Unit, MEA
Emerson Process Management – Fisher Divn,
Dubai - UAE

                                     KEYWORDS

Random Failures, Systematic Failures, Failure data, Safety Instrumented
System (SIS), Basic Process Control System (BPCS), Probability of Failure
on Demand (PFD), Safety Integrity Level (SIL), Safe Failure Fraction (SFF)

                                      ABSTRACT
Final Control Elements (Control valves or Safety Shut Down Valves) are the key
components of any close loop control system, whether it is used for Basic Process
Control System (BPCS) or for Safety Instrumented System (SIS). Financial constraints
derive different constructions of valves suitable for throttling vs On-Off applications.
However, due to past accidents, reliability has become key criterion for valve selection
process. Many of process industries based on their plant specific experience are tempted
to use Control Valves for Safety shut down applications, specifically smaller size valves,
which may not be cost prohibitive. This paper will provide clarity on when to assign the
SIL suitability for valves used in different scenarios (process control vs safety shut down)
and establish criterion to assign SIL applicability for “Final Element”.

                                  INTRODUCTION

Safety integrity Level (SIL) is the discrete level for specifying the safety integrity
requirements of the safety instrumented functions. It is a quantifiable measurement of
risk used as a way to establish safety performance targets of SIS systems. An SIL level
can be expressed in terms of Probability of Failure on Demand (PFD) or Risk Reduction
Factor (RRF). Risk reduction factor is simply a reciprocal of PFD (1/PFD). SIL levels are
designated in terms of PFD or RRF as a range of numbers.

PFD is a value that indicates the probability of a system failing to respond to a demand.
PFD is a function of test interval time and failure rate of the equipment under control.

In short, to establish an SIL suitability rating for a Safety Instrumented Function (SIF)
loop, a PFD value needs to be computed for components of loop (SIF loop consists of
Sensor, Logic Solver, Final Element) To calculate PFD, an equipment failure rate
number is required.
FAILURE MECHNAISM

Failures are categorized so that failure data can be organized in a consistent way. ISA
Technical report ISA-TR84.00.02-2002 – Part 1 talks about two failure modes - physical
(random) failures and functional (systematic) failures.

Physical or random failures result from the degradation of one or more hardware
mechanisms. It is often permanent and attributable to some component or module. For
example, when a control valve is at the end of travel and not moving with the change in
the control signal due to a broken shaft, the failure has occurred because of a physical
failure of the component in the valve.

On the other hand, functional or systematic failures are failures related in a deterministic
way to a certain cause, which can be eliminated by a modification of the design or
manufacturing process, operational procedures, or other relevant factors. For example, a
computer program has crashed and there is no physical damage, but the system has failed.
The end result is that the program is not working and a failure has occurred due to a
systematic error in programming code.

A major distinguishing feature between a random failure and a systematic failure is that
failures arising from a random failure can be predicted with reasonable accuracy, while
systematic failures, by their very nature, can not be accurately predicted.

With a basic understanding of failure mechanisms, it is clear that with mechanical items
like control valves, failures can be classified under the physical or random failure
category, which is simpler by nature.

Systematic failures are typical characteristics of programmable electronic systems or
microprocessor-based devices. The reliability concept has been around the industry for a
long time but due to advancements in electronics and control systems, this concept is
more crucial than ever before. Because a final control element is part of the control loop,
its reliability data is also being questioned by end-users.

This leads to a basic question –

      DOES A “FINAL CONTROL ELEMENT” REQUIRE A SIL
                   SUITABILITY RATING?
To understand the exact need, let us discuss control systems used in process sector
industries. Control systems are frequently separated into two categories: systems that
protect the equipment, classified as “Safety Instrumented System” and systems that
control the equipment, known as “Basic Process Control System.” Final control elements
are part of both systems.

According to IEC 61511 part 1, 3.2.3, Basic Process Control System has been defined as:
Basic Process Control System (BPCS)
A system which responds to input signals from the process, its associated equipment,
other programmable systems and/or an operator and generates output signals causing the
process and its associated equipment to operate in the desired manner but which does not
perform any safety instrumented functions with a claimed SIL ≥ 1.

This definition leads us to conclude that a BPCS is any system that has a SIL<1.
Therefore, SIS systems employing Safety Instrumented Functions with a specified safety
integrity level, which is necessary to achieve safety function, need to have a SIL rating
equal to or above 1.

This above conclusion raises some interesting questions:

1. Why are control valves to be SIL certified?

Industry practices and routines generally define which valve design need to be used for a
safety versus control applications.

However, due to reliability attributes of control valves, especially on smaller sizes, make
them suitable for safety applications.

Financial considerations and maintenance aspects (using same valve design for both
control and safety) are making control valves attractive for safety applications. We can
categorize in three different scenarios as below, where control valves can be used as
safety shut down valves.

CASE 1: Control valves which are used only as an on/off single final element

CASE 2: Control valves which are used in a dual purpose context (both for control and
safety)

CASE 3: Control valves which are used in a dual purpose context in addition
(redundancy) to an on/off valve

Illustration for Case1:

A control valve is used for Safety Applications. In this case Control Valve is “Final
Element” of Safety Instrumented Function (SIF) Loop needs to have SIL rating equal to
or above 1.
DCS (Control)                                  Logic solver (Safety)




                                          CASE 1

Illustration for Case2

Is it possible to use single control valve common for both Safety and Control?

According to IEC61511 part 1 clause 11.2.10, it states that a device used to perform part
of a safety instrumented function shall not be used for basic process control purposes,
where a failure of that device results in a failure of the basic process control function
which causes a demand on the safety instrumented function, unless an analysis has been
carried out to confirm that overall risk is acceptable.

This may possibly lead to following interpretation;

       YES: If all possible failures of the control valve do not place a demand on any
       SIF than control valve may be used with no further analysis. In this case, Control
       Valve is “Final Element” of Safety Instrumented Function (SIF) Loop, needs to
       have SIL rating equal to or above 1.
       NO: If failure of the control valve will place a demand on a SIF than it may not
       be used as the only final element in that SIF.
       If failure of the control valve will not place a demand on SIF, for which it is
       intended but may place demand on any other associated SIF than the control
       valve may be used in a SIF only after detailed analysis. An additional step to
further analysis will be necessary in these cases to ensure that the dangerous
       failure rate of the shared equipment is sufficiently low. In this case, Control Valve
       is “Final Element” of Safety Instrumented Function (SIF) Loop, needs to have
       SIL rating equal to or above 1.




         DCS                                                   Logic Solver
       (Control)                                                 (Safety)




                                          CASE 2

Illustration for Case 3

   In this scenario a control valve is used to provide additional hardware fault tolerance
   for higher SIL application, which is similar to using a control valve for safety but
   with the added burden of justifying and verifying the SIF design and its final SIL
   value.
DCS (Control)                                             Logic Solver (Safety)




                                            CASE 3

2. Why are control valves that are used in a BPCS required to be SIL certified?

As per IEC definition, a SIL rating is not required but it is possible that reliability data for
a valve may be required. Industry or end user may require failure rate data of equipment
or in loose term MTBF (Mean Time Between Failure).

Essentially MTTF (mean time to fail) is the right term to define product reliability. It is
usually furnished in units of hours. This is more common for electronic components, but
trends are seen even for mechanical items.

3. How can MTTF provide useful data for the calculation of PFDavg (probability of
failure upon demand)?
MTTF can be simplified to 1/(sum of all failure rates) or equal to 1/λ. In general,
components of MTTF can be categorized in the following categories:

Safe Detected (λSD)
Safe Undetected (λSU)
Dangerous Detected (λDD)
Dangerous Undetected (λDU)

This data leads to useful information:
MTTFs (Mean time to Fail Safe) and
MTTFd (Mean time to fail Dangerous)
SFF (Safe Failure Fraction)

MTTFs can be computed by adding (λSD + λSU ) and reversing the number
MTTFd can be computed by taking λDU and reversing the number
SFF can be computed using the equation = 1 – (λDU ) / (λSD              +
                                                                            λSU + λDD + λDU) or (λSD    +

λSU + λDD ) / (λSD + λSU + λDD + λDU).

PFDAVG can be calculated using simplified equation of failure rate of equipment under
control (EUC) times test interval divided by two.

MTTFs calculations provide plant availability, which is a very important measurement of
process plant up-time capability. A spurious trip that is considered a safe but unplanned
trip may be too strenuous for piping and other equipment. Not only are production and
quality affected, profits may be as well. Also, it is important to consider the higher risk
associated with plant start up. IEC 61508 stresses more on “safety event”, in case of
demands, which relates to dangerous undetected failures and are used to compute
PFDavg.

As such, mechanical equipment like valve bodies and actuators do not have any
diagnostics capabilities. According to IEC 61508 part 2, table 2, with a hardware fault
tolerance (HFT) of zero, they can only be used in SIL 1 applications. A digital valve
controller mounted on a “Final Control Element” improves the diagnostic coverage
factor, which in turn improves the SFF number, allowing the possible use of higher SIL
rated applications (Per IEC 61508 part 2, table 3) by use of the Partial Stroke Test.

                                         CONCLUSION
If control valve is designated to carry out a safety function then it should meet the SIL
level of the Safety Instrumented System Function loop. In this case, failure rate numbers
will be required to compute the total PFDAVG of the loop. The end user may possibly ask
for third party certification to comply with IEC 61508 requirements to meet certain SIL
suitability. However, if a control valve is designated for normal process control than as
per IEC61511-3 part 1, section 3.2.3, Basic Process Control System, definition does not
designate control valves to have SIL suitability.


                                         REFERENCES

i) International Electrotechnical Commission, “Functional Safety - Safety instrumented systems for the
process industry sector” - IEC61511
ii) International Electrotechnical Commission, “Functional Safety of Electrical / Electronic / Programmable
Electronic Safety-Related Systems” - IEC61508
iii) Control Systems Safety Evaluation & Reliability – William M Goble
iv) ISA Technical report ISA-TR84.00.02-2002 – Part 1
MEMBER AREA


ISA Kuwait Section with association with HONEYWELL arranged a
Technical Presentation on “Plant Wide Manufacturing Execution
Systems for Refineries and Petrochemical Plants”
on November 5th, 2009
MEMBER AREA




                              ISA Meeting Notice
                        Thursday, December 10th , 2009
                            Hilton Resorts – Mangaf


   The Kuwait Section of ISA is pleased to invite all the ISA Members in
Kuwait to the Technical Presentation on December 10th, 2009 sponsored
                       by Yokogawa Middle East .


  M r . Govind Raju Seshadri - Marketing Manager, Yokogawa Middle East,
                                 Bahrain

                                     Will present on :

          " Benefits of True Integration of DCS / SIS / SCADA "

Attendance is free of charge for all ISA members. The meeting registration and reception will
begin at 6:00 P.M. and the presentation will start at 6:30 P.M. The presentation and dinner will
be held at the BURGAN ROOM, Hotel Hilton Resorts, Mangaf. Please confirm you
attendance to muthu@rezayatkwt.com
                                         
                                                       
 
New  9370‐FB Series Fieldbus Barriers – A Value Proposition 

Serviceability – Safety – Size – Scalability 

Introduction 

MTL’s 9370‐FB Series Fieldbus Barrier establishes a new benchmark for FOUNDATIONTM Fieldbus 
networks in hazardous areas.  As a Zone 1‐mounted wiring hub with spur connections to intrinsically 
safe fieldbus instruments, 
the 9370‐FB retains the           Pluggable trunk                                               “Live
                                  surge protector                                            pluggable”
major benefits of the                (optional)                                           6-spur Fieldbus
                                                                                          Barrier modules
High Energy Trunk 
technique while removing          Pluggable
                                 Terminator                                                     Spur surge
the drawbacks associated                                                                         protector
                                   Trunk                                                         (optional)
with existing Fieldbus           terminals
Barrier implementations.  
The result is lower cost, 
                                    Trunk
safer operation and               Terminal
                                  Assembly
higher reliability                  (TTA)                                                    Screw-
                                                                                            secured,
throughout the life‐cycle          housing
                                                                                           pluggable
of the fieldbus network,                                                                       spur
                                                                                            terminals
with benefits not only for      The new 12-spur 9373-FB Fieldbus Barrier in Stainless Steel enclosure with
the plant operator but                            Trunk and Spur surge protection fitted 
also for all parties 
involved in the design and installation process. 

The High Energy Trunk technique provides a valuable means of connecting fieldbus instruments in 
Zone 1 or Zone 0 hazardous areas to the host control system.  The Fieldbus Barrier is field‐mounted 
and provides the interface between the trunk connection and intrinsically safe spurs, allowing 
heavily loaded segments and long cable lengths irrespective of the Gas Group.  The spur connections 
are compatible with any IS‐certified fieldbus devices complying with ‘Entity’ or ‘FISCO’ specifications. 

Serviceability 

The time taken to repair failed instrumentation is crucial in many process applications.  At worst 
there is the risk of lost production. Even temporary loss of process visibility can lead to compromises 
in product quality or manufacturing efficiency.   If, in addition, there is the risk of fire and explosion 
or exposure to toxic hazards it is even more important to minimise the time an operator spends in 
the process area.  Any activity in an area where flammable or toxic materials are present is complex 
and expensive to organise, so the repair of field mounted equipment should be as straightforward as 
possible.  In some cases, extreme environmental conditions – such as high or low temperatures – 
provide an additional incentive to shorten any time spent outside the control room. 




                                                 Page 1 of 5             Value Proposition_9370‐FB Series.doc 
                                         
                                                       
 
A guiding principle during the design of MTL’s 
9370‐FB was to make it quick and easy to repair in 
the event of failure.  As a result, the parts of the 
system containing complex electronic circuits are 
housed in “pluggable” modules that are “hot‐
swappable” in the presence of explosive 
atmospheres and, due to this design, they can be 
easily removed and replaced in the field. This 
crucially leads to less time spent on this                                                                    
                                                                Easy removal of 9377-FB Fieldbus Barrier
maintenance activity in the field.                                              modules

This is in sharp contrast with conventional Fieldbus Barrier implementations, where serviceability is 
impaired by the hard‐wired nature of the field enclosure.  As a result, some attempts are usually 
made in existing installations to allow some degree of maintainability in hazardous areas.  For 
example, explosion‐protected isolating switches may be incorporated in the fieldbus trunk circuit, to 
allow a failed Fieldbus Barrier module to be removed from the enclosure while other barrier 
modules remain energised and operating.  However, this adds significantly to the amount of internal 
wiring and hardware, and threatens to reduce the overall reliability of the network.  During the 
replacement, interconnecting cables that are temporarily removed from the failed barrier module 
must be prevented from shorting to other circuits inside the enclosure and then correctly re‐inserted 
into the trunk and spur terminals on the replacement module.   

As an example, the table below describes the steps required to replace a failed Fieldbus Barrier 
module in both a conventional installation and in the new 9370‐FB Series.  This highlights two 
important areas: 

       1. The time taken to affect the repair, ie. The Mean Time To Repair.  This will depend on factors 
          such as accessibility and environmental conditions, but plant operators will have their own 
          assessment of the relative times.  Repairing the conventional system is likely to take tens of 
          minutes, compared with less than five minutes for the 9370‐FB. 

       2. That a new fault could be introduced inadvertently.  The relative complexity of repairing the 
          conventional system adds a new risk – such as misplacing the wiring when it is re‐connected 
          to the replacement Fieldbus Barrier module.  This kind of fault may not become evident until 
          after the operator has completed the initial repair and returned from the field. 




                                                 Page 2 of 5                Value Proposition_9370‐FB Series.doc 
                                         
                                                                      
 
Maintenance activity                        Conventional Fieldbus Barrier enclosure      9370‐FB Series Fieldbus Barrier 
                                                                                         enclosure  


Remove and replace                             •    Remove main enclosure cover               •     Remove main 
Fieldbus Barrier                                                                                   enclosure cover 
                                               •    Select and operate appropriate 
module  
                                                   isolating switch                           •    Loosen barrier securing 
                                                                                                   screws 
                                               •    Open trunk terminal cover on 
                                                   barrier module                             •    Remove and replace 
                                                                                                   barrier module 
                                               •    Remove trunk wiring from 
                                                   terminals and secure                       •     Tighten barrier screws 
                                                                                                   and replace enclosure 
                                               •    Remove spur wiring from 
                                                                                                   cover 
                                                   terminals and secure 
                                               •    Remove and replace barrier 
                                                   module 
                                               •    Reinstate trunk and spur wiring 
                                                   and close trunk terminal cover 
                                               •    Operate isolating switch 
                                               •    Replace enclosure cover 

             Comparison of module replacement procedure for conventional FBB and new 9370‐FB 

Safety 

Any electrical apparatus located within a hazardous area presents a possible source of ignition for 
flammable materials, so the selection process should identify and – as far as is practically possible – 
minimise the risk of personal injury or damage to plant and equipment.  The design and construction 
of electrical equipment intended for hazardous area use is governed by international standards, and 
the user has an implied obligation not only to comply with minimum requirements, but also to select 
apparatus that uses the latest technology to achieve safety.  There are two important 
considerations: 

              1. To reduce the risk associated with routine maintenance that is properly carried out 
                 accordance to the manufacturer’s guidelines and national codes of practice, and 
              2. To reduce the risk that any inadvertent or unauthorised activity could cause an unsafe 
                 condition. 

Since Fieldbus Barriers are intended to be installed hazardous areas, careful attention should be paid 
to the risks of operating and maintaining them throughout their life cycle. 

By definition in a ‘High Energy Trunk’ network, the voltage and current levels in the fieldbus trunk 
circuit are above those permitted by Intrinsic Safety and are therefore capable of causing an 
incendive arc if the circuit is broken or shorted.  MTL’s 9370‐FB Fieldbus Barrier is constructed so 
that the fieldbus trunk connections are contained within a separate compartment that has its own 
cover.  Once the trunk cables have been installed into the terminals within this compartment, it 
should not be necessary to open it until the unit is taken out of service.  


                                                                Page 3 of 5             Value Proposition_9370‐FB Series.doc 
                                         
                                                             
 




                                                                                          
                    9373-FB (12-spur stainless steel enclosure) showing the pluggable components

Another contributor to safety is that all the user‐accessible circuits and connections within the main 
enclosure compartment of a 9370‐FB system are live‐workable in a hazardous area.  This eliminates 
any risk of an incendive spark from an unauthorised or inadvertent maintenance activity. 

Size 

Reducing the size of field‐mounted apparatus such as junction boxes has advantages throughout the 
life of an installation.  Right from the start, there can be savings in shipping and temporary storage 
costs.  Smaller enclosures are also easier to install and maintain, and require less mechanical 
infrastructure to support them.  Lids and covers are less likely to deform if they are smaller, reducing 
the risk of water or dust ingress. 
 
The 9370‐FB Series Fieldbus Barrier is 
significantly smaller than the conventional 
equipment it replaces.  The 12‐spur variant is 
as much as 70% smaller in terms of overall 
enclosure volume.  This will be of particular 
benefit where space and weight are serious 
considerations, for example in restricted 
                                                         The 9370-FB Fieldbus Barrier is up to 70% smaller
process areas or offshore installations. 
                                                                      than existing implementations

Scalability 

It is an industry maxim that the later a problem emerges in a project, the more expensive it is to put 
right.  In the extreme, replacing or modifying equipment that is already installed on the plant is 
many times more expensive than changing the design on paper.  It is therefore imperative that 
decisions made about product selection during the ‘Front End Engineering Design’ stage of a project 
should survive through to completion.  However, there are typically many uncertainties during the 
early design phases that introduce risk.  For example, the area classification, field cable lengths, 
quantity and location of field instruments may only be known approximately when the apparatus 
needs to be specified. 



                                                       Page 4 of 5            Value Proposition_9370‐FB Series.doc 
                                         
                                                      
 
 
The key to solving this problem is flexibility.  The selected solutions must be able to accommodate 
changes right up until the design is frozen and, ideally, even during the commissioning stage. 
 
Conventional Fieldbus Barrier enclosures do not lend themselves well to this process because they 
are ‘customised’ according to the project requirements and cannot be finalised until all 
requirements are fully defined.  Two important considerations emerge: 
 
    1.  Number of fieldbus spurs per field enclosure.  This must be known within reasonable limits, 
        so that the size and total number of enclosures can be established.  Conventional Fieldbus 
        Barriers are assembled using modules that are hard‐wired into the enclosure.  Subsequent 
        expansion is problematic unless the space and dedicated internal wiring for an additional 
        module have been provided during the initial construction.  The addition of a module in the 
        field can also be difficult because the trunk and spur wiring has to be correctly connected to 
        its terminals. 
         
        With the new 9730‐FB Series, a 12‐spur enclosure fitted with one 6‐spur module can be 
        specified instead of a 6‐spur enclosure if there is any uncertainty.  This attracts only a small 
        price increment.    Expansion to 12 active spurs is easily accomplished by plugging a second 
        module into the enclosure.  No other configuration is necessary, provided the fieldbus 
        power supply is correctly sized and the full loading of the segment has been anticipated. 
         
    2. Surge protection.  This may be specified for installations that are vulnerable to damage from 
        electrical surges, either as a result of atmospheric activity or transients from heavy‐current 
        electrical apparatus.  In order to reduce cost, normal practice would be to protect only those 
        parts of the fieldbus network whose loss would cause serious operational problems, and 
        parts that are most vulnerable.  For example, fieldbus instruments that have a relatively long 
        horizontal or vertical displacement from the field junction box are more likely to suffer 
        damage from surge currents.  Instruments in critical control loops may also warrant special 
        protection. 
         
        Again, these facts may still be uncertain when the design of the Fieldbus Barrier enclosures 
        has to be finalised, in order for their supplier to begin manufacturing.  In many cases, the full 
        I/O schedule is not confirmed until much later in the project.  As a result, the only options 
        available are to provide surge protection within the Fieldbus Barrier enclosure for all spurs, 
        or to manufacture different models with varying levels of protection.  But these alternatives 
        add cost and complexity. 
         
        What is required is the ability to fit the surge protection components where and when they 
        are required.  The 9370‐FB Series accomplishes this with pluggable protectors that can be 
        fitted into the enclosure at any stage, even after installation.  The basic enclosure design 
        already anticipates the need to protect the fieldbus trunk and one or more spurs, without 
        any additional wiring.  This adds a great deal of flexibility. 




                                                Page 5 of 5              Value Proposition_9370‐FB Series.doc 

More Related Content

What's hot

Safety instrumented functions (sif) safety integrity level (sil) evaluation t...
Safety instrumented functions (sif) safety integrity level (sil) evaluation t...Safety instrumented functions (sif) safety integrity level (sil) evaluation t...
Safety instrumented functions (sif) safety integrity level (sil) evaluation t...John Kingsley
 
Delta v advanced control overview_en
Delta v advanced control overview_enDelta v advanced control overview_en
Delta v advanced control overview_enLuis Atencio
 
Honeywell - Alarm management standards taken seriously
Honeywell - Alarm management standards taken seriouslyHoneywell - Alarm management standards taken seriously
Honeywell - Alarm management standards taken seriouslyRobert-Emmanuel Mayssat
 
Functional integrity certification exida
Functional integrity certification   exidaFunctional integrity certification   exida
Functional integrity certification exidaKoenLeekens
 
IEC 61511 introduction
IEC 61511 introduction IEC 61511 introduction
IEC 61511 introduction KoenLeekens
 
New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...
New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...
New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...Emerson Exchange
 
DCS PRESENTATION
DCS PRESENTATIONDCS PRESENTATION
DCS PRESENTATIONbvent2005
 
Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...
Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...
Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...Kenexis
 
Best Practices in SIS Documentation
Best Practices in SIS DocumentationBest Practices in SIS Documentation
Best Practices in SIS DocumentationEmerson Exchange
 
61508 Compliance of actuators and Life cycle considerations (Eng)
61508 Compliance of actuators and Life cycle considerations (Eng) 61508 Compliance of actuators and Life cycle considerations (Eng)
61508 Compliance of actuators and Life cycle considerations (Eng) ie-net ingenieursvereniging vzw
 
W09 safety risk-assessments-pls-and-sils
W09 safety risk-assessments-pls-and-silsW09 safety risk-assessments-pls-and-sils
W09 safety risk-assessments-pls-and-silsVo Quoc Hieu
 

What's hot (20)

Safety instrumented functions (sif) safety integrity level (sil) evaluation t...
Safety instrumented functions (sif) safety integrity level (sil) evaluation t...Safety instrumented functions (sif) safety integrity level (sil) evaluation t...
Safety instrumented functions (sif) safety integrity level (sil) evaluation t...
 
Sil presentation
Sil presentationSil presentation
Sil presentation
 
Understanding sil
Understanding silUnderstanding sil
Understanding sil
 
Barnard Impacts of Demand Rates
Barnard Impacts of Demand RatesBarnard Impacts of Demand Rates
Barnard Impacts of Demand Rates
 
Delta v advanced control overview_en
Delta v advanced control overview_enDelta v advanced control overview_en
Delta v advanced control overview_en
 
Pressure Relief Devices
Pressure Relief DevicesPressure Relief Devices
Pressure Relief Devices
 
HSE Manual -1.pdf
HSE Manual -1.pdfHSE Manual -1.pdf
HSE Manual -1.pdf
 
Honeywell - Alarm management standards taken seriously
Honeywell - Alarm management standards taken seriouslyHoneywell - Alarm management standards taken seriously
Honeywell - Alarm management standards taken seriously
 
Functional integrity certification exida
Functional integrity certification   exidaFunctional integrity certification   exida
Functional integrity certification exida
 
IEC 61511 introduction
IEC 61511 introduction IEC 61511 introduction
IEC 61511 introduction
 
New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...
New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...
New DeltaV Module Templates to Easily Configure, View, and Trend Advanced Pre...
 
DCS Or PLC
DCS Or PLCDCS Or PLC
DCS Or PLC
 
DCS PRESENTATION
DCS PRESENTATIONDCS PRESENTATION
DCS PRESENTATION
 
Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...
Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...
Shared Field Instruments in SIS: Incidents Caused by Poor Design and Recommen...
 
Best Practices in SIS Documentation
Best Practices in SIS DocumentationBest Practices in SIS Documentation
Best Practices in SIS Documentation
 
61508 Compliance of actuators and Life cycle considerations (Eng)
61508 Compliance of actuators and Life cycle considerations (Eng) 61508 Compliance of actuators and Life cycle considerations (Eng)
61508 Compliance of actuators and Life cycle considerations (Eng)
 
SIL.ppt
SIL.pptSIL.ppt
SIL.ppt
 
Functional safety standards_for_machinery
Functional safety standards_for_machineryFunctional safety standards_for_machinery
Functional safety standards_for_machinery
 
W09 safety risk-assessments-pls-and-sils
W09 safety risk-assessments-pls-and-silsW09 safety risk-assessments-pls-and-sils
W09 safety risk-assessments-pls-and-sils
 
Dcs course
Dcs courseDcs course
Dcs course
 

Similar to ISA Kuwait Section December Newsletter

Sil explained in valve actuators
Sil explained in valve actuatorsSil explained in valve actuators
Sil explained in valve actuatorsJohn Kingsley
 
Asco Safety Systems Solenoid Valve Selection Guide
Asco Safety Systems Solenoid Valve Selection GuideAsco Safety Systems Solenoid Valve Selection Guide
Asco Safety Systems Solenoid Valve Selection GuideMiller Energy, Inc.
 
Requirements of ISO 26262
Requirements of ISO 26262Requirements of ISO 26262
Requirements of ISO 26262Torben Haagh
 
143673805 1-burner-management-system
143673805 1-burner-management-system143673805 1-burner-management-system
143673805 1-burner-management-systemMowaten Masry
 
55419663 burner-management-system
55419663 burner-management-system55419663 burner-management-system
55419663 burner-management-systemMowaten Masry
 
Reliability Instrumented System | Arrelic Insights
Reliability Instrumented System | Arrelic Insights Reliability Instrumented System | Arrelic Insights
Reliability Instrumented System | Arrelic Insights Arrelic
 
T89 introductiontofunctionalsafetyformachinery
T89 introductiontofunctionalsafetyformachineryT89 introductiontofunctionalsafetyformachinery
T89 introductiontofunctionalsafetyformachineryVo Quoc Hieu
 
A straightforward approach using DeltaV SIS for typical BMS systems
 A straightforward approach using DeltaV SIS for typical BMS systems A straightforward approach using DeltaV SIS for typical BMS systems
A straightforward approach using DeltaV SIS for typical BMS systemsDavid Sheppard
 
2012A8PS309P_AbhishekKumar_FinalReport
2012A8PS309P_AbhishekKumar_FinalReport2012A8PS309P_AbhishekKumar_FinalReport
2012A8PS309P_AbhishekKumar_FinalReportabhishekroushan
 
Requirements of ISO 26262
Requirements of ISO 26262Requirements of ISO 26262
Requirements of ISO 26262Torben Haagh
 
Safety of machinery - Application of standard EN ISO 13849-1
Safety of machinery - Application of standard EN ISO 13849-1Safety of machinery - Application of standard EN ISO 13849-1
Safety of machinery - Application of standard EN ISO 13849-1dnunez1984
 
Safety of machinery
Safety of machinerySafety of machinery
Safety of machineryVo Quoc Hieu
 
35958867 safety-instrumented-systems
35958867 safety-instrumented-systems35958867 safety-instrumented-systems
35958867 safety-instrumented-systemsMowaten Masry
 
Safety instrumented systems
Safety instrumented systemsSafety instrumented systems
Safety instrumented systemsMowaten Masry
 
Safety pp002 -en-e
Safety pp002 -en-eSafety pp002 -en-e
Safety pp002 -en-eVo Quoc Hieu
 
Automation of Instrument Air Distribution System using Arduino and Integrate ...
Automation of Instrument Air Distribution System using Arduino and Integrate ...Automation of Instrument Air Distribution System using Arduino and Integrate ...
Automation of Instrument Air Distribution System using Arduino and Integrate ...IRJET Journal
 
Functional-Safety-Overview-UL.ppt
Functional-Safety-Overview-UL.pptFunctional-Safety-Overview-UL.ppt
Functional-Safety-Overview-UL.pptssuserba01d94
 

Similar to ISA Kuwait Section December Newsletter (20)

Sil explained in valve actuators
Sil explained in valve actuatorsSil explained in valve actuators
Sil explained in valve actuators
 
Asco Safety Systems Solenoid Valve Selection Guide
Asco Safety Systems Solenoid Valve Selection GuideAsco Safety Systems Solenoid Valve Selection Guide
Asco Safety Systems Solenoid Valve Selection Guide
 
6- Writing a SRS-Dec-2016
6- Writing a SRS-Dec-20166- Writing a SRS-Dec-2016
6- Writing a SRS-Dec-2016
 
Requirements of ISO 26262
Requirements of ISO 26262Requirements of ISO 26262
Requirements of ISO 26262
 
143673805 1-burner-management-system
143673805 1-burner-management-system143673805 1-burner-management-system
143673805 1-burner-management-system
 
55419663 burner-management-system
55419663 burner-management-system55419663 burner-management-system
55419663 burner-management-system
 
lenner.pptx
lenner.pptxlenner.pptx
lenner.pptx
 
Reliability Instrumented System | Arrelic Insights
Reliability Instrumented System | Arrelic Insights Reliability Instrumented System | Arrelic Insights
Reliability Instrumented System | Arrelic Insights
 
T89 introductiontofunctionalsafetyformachinery
T89 introductiontofunctionalsafetyformachineryT89 introductiontofunctionalsafetyformachinery
T89 introductiontofunctionalsafetyformachinery
 
A straightforward approach using DeltaV SIS for typical BMS systems
 A straightforward approach using DeltaV SIS for typical BMS systems A straightforward approach using DeltaV SIS for typical BMS systems
A straightforward approach using DeltaV SIS for typical BMS systems
 
2012A8PS309P_AbhishekKumar_FinalReport
2012A8PS309P_AbhishekKumar_FinalReport2012A8PS309P_AbhishekKumar_FinalReport
2012A8PS309P_AbhishekKumar_FinalReport
 
Requirements of ISO 26262
Requirements of ISO 26262Requirements of ISO 26262
Requirements of ISO 26262
 
Delta v sis safety manual, may 2011
Delta v sis safety manual, may 2011Delta v sis safety manual, may 2011
Delta v sis safety manual, may 2011
 
Safety of machinery - Application of standard EN ISO 13849-1
Safety of machinery - Application of standard EN ISO 13849-1Safety of machinery - Application of standard EN ISO 13849-1
Safety of machinery - Application of standard EN ISO 13849-1
 
Safety of machinery
Safety of machinerySafety of machinery
Safety of machinery
 
35958867 safety-instrumented-systems
35958867 safety-instrumented-systems35958867 safety-instrumented-systems
35958867 safety-instrumented-systems
 
Safety instrumented systems
Safety instrumented systemsSafety instrumented systems
Safety instrumented systems
 
Safety pp002 -en-e
Safety pp002 -en-eSafety pp002 -en-e
Safety pp002 -en-e
 
Automation of Instrument Air Distribution System using Arduino and Integrate ...
Automation of Instrument Air Distribution System using Arduino and Integrate ...Automation of Instrument Air Distribution System using Arduino and Integrate ...
Automation of Instrument Air Distribution System using Arduino and Integrate ...
 
Functional-Safety-Overview-UL.ppt
Functional-Safety-Overview-UL.pptFunctional-Safety-Overview-UL.ppt
Functional-Safety-Overview-UL.ppt
 

More from ISA Interchange

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkISA Interchange
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical systemISA Interchange
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...ISA Interchange
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...ISA Interchange
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...ISA Interchange
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...ISA Interchange
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...ISA Interchange
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...ISA Interchange
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...ISA Interchange
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...ISA Interchange
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...ISA Interchange
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...ISA Interchange
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...ISA Interchange
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...ISA Interchange
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsISA Interchange
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessISA Interchange
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemISA Interchange
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...ISA Interchange
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...ISA Interchange
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersISA Interchange
 

More from ISA Interchange (20)

An optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic NetworkAn optimal general type-2 fuzzy controller for Urban Traffic Network
An optimal general type-2 fuzzy controller for Urban Traffic Network
 
Embedded intelligent adaptive PI controller for an electromechanical system
Embedded intelligent adaptive PI controller for an electromechanical  systemEmbedded intelligent adaptive PI controller for an electromechanical  system
Embedded intelligent adaptive PI controller for an electromechanical system
 
State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...State of charge estimation of lithium-ion batteries using fractional order sl...
State of charge estimation of lithium-ion batteries using fractional order sl...
 
Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...Fractional order PID for tracking control of a parallel robotic manipulator t...
Fractional order PID for tracking control of a parallel robotic manipulator t...
 
Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...Fuzzy logic for plant-wide control of biological wastewater treatment process...
Fuzzy logic for plant-wide control of biological wastewater treatment process...
 
Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...Design and implementation of a control structure for quality products in a cr...
Design and implementation of a control structure for quality products in a cr...
 
Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...Model based PI power system stabilizer design for damping low frequency oscil...
Model based PI power system stabilizer design for damping low frequency oscil...
 
A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...A comparison of a novel robust decentralized control strategy and MPC for ind...
A comparison of a novel robust decentralized control strategy and MPC for ind...
 
Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...Fault detection of feed water treatment process using PCA-WD with parameter o...
Fault detection of feed water treatment process using PCA-WD with parameter o...
 
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
Model-based adaptive sliding mode control of the subcritical boiler-turbine s...
 
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
A Proportional Integral Estimator-Based Clock Synchronization Protocol for Wi...
 
An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...An artificial intelligence based improved classification of two-phase flow patte...
An artificial intelligence based improved classification of two-phase flow patte...
 
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
New Method for Tuning PID Controllers Using a Symmetric Send-On-Delta Samplin...
 
Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...Load estimator-based hybrid controller design for two-interleaved boost conve...
Load estimator-based hybrid controller design for two-interleaved boost conve...
 
Effects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control SystemsEffects of Wireless Packet Loss in Industrial Process Control Systems
Effects of Wireless Packet Loss in Industrial Process Control Systems
 
Fault Detection in the Distillation Column Process
Fault Detection in the Distillation Column ProcessFault Detection in the Distillation Column Process
Fault Detection in the Distillation Column Process
 
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank SystemNeural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
Neural Network-Based Actuator Fault Diagnosis for a Non-Linear Multi-Tank System
 
A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...A KPI-based process monitoring and fault detection framework for large-scale ...
A KPI-based process monitoring and fault detection framework for large-scale ...
 
An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...An adaptive PID like controller using mix locally recurrent neural network fo...
An adaptive PID like controller using mix locally recurrent neural network fo...
 
A method to remove chattering alarms using median filters
A method to remove chattering alarms using median filtersA method to remove chattering alarms using median filters
A method to remove chattering alarms using median filters
 

Recently uploaded

Unveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesUnveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesDoe Paoro
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Peter Ward
 
BAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptxBAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptxran17april2001
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFChandresh Chudasama
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdfChris Skinner
 
Healthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterHealthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterJamesConcepcion7
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...Operational Excellence Consulting
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersPeter Horsten
 
Planetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifePlanetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifeBhavana Pujan Kendra
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxRakhi Bazaar
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOne Monitar
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfShashank Mehta
 
Entrepreneurship lessons in Philippines
Entrepreneurship lessons in  PhilippinesEntrepreneurship lessons in  Philippines
Entrepreneurship lessons in PhilippinesDavidSamuel525586
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdfShaun Heinrichs
 
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...Associazione Digital Days
 
Welding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsWelding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsIndiaMART InterMESH Limited
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMVoces Mineras
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Anamaria Contreras
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataExhibitors Data
 

Recently uploaded (20)

Unveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic ExperiencesUnveiling the Soundscape Music for Psychedelic Experiences
Unveiling the Soundscape Music for Psychedelic Experiences
 
Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...Fordham -How effective decision-making is within the IT department - Analysis...
Fordham -How effective decision-making is within the IT department - Analysis...
 
BAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptxBAILMENT & PLEDGE business law notes.pptx
BAILMENT & PLEDGE business law notes.pptx
 
Guide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDFGuide Complete Set of Residential Architectural Drawings PDF
Guide Complete Set of Residential Architectural Drawings PDF
 
20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf20200128 Ethical by Design - Whitepaper.pdf
20200128 Ethical by Design - Whitepaper.pdf
 
Healthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare NewsletterHealthcare Feb. & Mar. Healthcare Newsletter
Healthcare Feb. & Mar. Healthcare Newsletter
 
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptxThe Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
The Bizz Quiz-E-Summit-E-Cell-IITPatna.pptx
 
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
The McKinsey 7S Framework: A Holistic Approach to Harmonizing All Parts of th...
 
EUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exportersEUDR Info Meeting Ethiopian coffee exporters
EUDR Info Meeting Ethiopian coffee exporters
 
Planetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in LifePlanetary and Vedic Yagyas Bring Positive Impacts in Life
Planetary and Vedic Yagyas Bring Positive Impacts in Life
 
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptxGo for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
Go for Rakhi Bazaar and Pick the Latest Bhaiya Bhabhi Rakhi.pptx
 
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring CapabilitiesOnemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
Onemonitar Android Spy App Features: Explore Advanced Monitoring Capabilities
 
Darshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdfDarshan Hiranandani [News About Next CEO].pdf
Darshan Hiranandani [News About Next CEO].pdf
 
Entrepreneurship lessons in Philippines
Entrepreneurship lessons in  PhilippinesEntrepreneurship lessons in  Philippines
Entrepreneurship lessons in Philippines
 
1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf1911 Gold Corporate Presentation Apr 2024.pdf
1911 Gold Corporate Presentation Apr 2024.pdf
 
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
Lucia Ferretti, Lead Business Designer; Matteo Meschini, Business Designer @T...
 
Welding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan DynamicsWelding Electrode Making Machine By Deccan Dynamics
Welding Electrode Making Machine By Deccan Dynamics
 
Memorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQMMemorándum de Entendimiento (MoU) entre Codelco y SQM
Memorándum de Entendimiento (MoU) entre Codelco y SQM
 
Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.Traction part 2 - EOS Model JAX Bridges.
Traction part 2 - EOS Model JAX Bridges.
 
NAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors DataNAB Show Exhibitor List 2024 - Exhibitors Data
NAB Show Exhibitor List 2024 - Exhibitors Data
 

ISA Kuwait Section December Newsletter

  • 1. KUWAIT SECTION December NEWSLETTER 2009 INSIDE THIS ISSUE FROM SECTION PRESIDENT’S DESK I am pleased to release the December 2009 Newsletter of ISA - Kuwait Section. TECHNICAL WINDOW We invite ISA Members and other Automation Professionals to contribute articles to be published in this newsletter. MEMBERS AREA Please send your feedback about your expectations of ISA - Kuwait Section to PRODUCT REVIEW kuwait-section@isa-online.org Best Regards Ali H Al Hashemi President ISA - Kuwait Section FOR PRIVATE CIRCULATION ONLY
  • 2. ISA KUWAIT SECTION OFFICE Ali H Al Hashemi President Kuwait National Petroleum Co a.hashemi@knpc.com Ali H. Alawadhi Vice President Kuwait National Petroleum Co ah.awadhi015@knpc.com PP Muthu Secretary Rezayat Trading Co Ltd Office 24816836 Ext. 146 Cell 9437119 muthu@rezayatkwt.com C. Dakshinamurthy Treasurer Kuwait Oil Co Office 23822713 dakshinamurthy@kockw.com Chandra Sekhar, S Membership Chair Kuwait Oil Co chandras@kockw.com Editorial Board Shemej Kumar K.K P.P Muthu Biju Thomas SKKKumar@kockw.com muthu@rezayatkwt.com bijuthomas@eth.com Drajat Satriotomo Gijo K Augustine dsatriotomo@kockw.com gk.augustine@knpc.com Invitation to Members We invite interested ISA members to write We invite IA&C Manufacturers and their anything about Automation to be published representatives to use this newsletter to in this monthly Newsletter. advertise their product offerings.
  • 3. When is a Safety Integrity Level (SIL) Rating of a Valve Required? Riyaz Ali Director, Instruments Unit, MEA Emerson Process Management – Fisher Divn, Dubai - UAE KEYWORDS Random Failures, Systematic Failures, Failure data, Safety Instrumented System (SIS), Basic Process Control System (BPCS), Probability of Failure on Demand (PFD), Safety Integrity Level (SIL), Safe Failure Fraction (SFF) ABSTRACT Final Control Elements (Control valves or Safety Shut Down Valves) are the key components of any close loop control system, whether it is used for Basic Process Control System (BPCS) or for Safety Instrumented System (SIS). Financial constraints derive different constructions of valves suitable for throttling vs On-Off applications. However, due to past accidents, reliability has become key criterion for valve selection process. Many of process industries based on their plant specific experience are tempted to use Control Valves for Safety shut down applications, specifically smaller size valves, which may not be cost prohibitive. This paper will provide clarity on when to assign the SIL suitability for valves used in different scenarios (process control vs safety shut down) and establish criterion to assign SIL applicability for “Final Element”. INTRODUCTION Safety integrity Level (SIL) is the discrete level for specifying the safety integrity requirements of the safety instrumented functions. It is a quantifiable measurement of risk used as a way to establish safety performance targets of SIS systems. An SIL level can be expressed in terms of Probability of Failure on Demand (PFD) or Risk Reduction Factor (RRF). Risk reduction factor is simply a reciprocal of PFD (1/PFD). SIL levels are designated in terms of PFD or RRF as a range of numbers. PFD is a value that indicates the probability of a system failing to respond to a demand. PFD is a function of test interval time and failure rate of the equipment under control. In short, to establish an SIL suitability rating for a Safety Instrumented Function (SIF) loop, a PFD value needs to be computed for components of loop (SIF loop consists of Sensor, Logic Solver, Final Element) To calculate PFD, an equipment failure rate number is required.
  • 4. FAILURE MECHNAISM Failures are categorized so that failure data can be organized in a consistent way. ISA Technical report ISA-TR84.00.02-2002 – Part 1 talks about two failure modes - physical (random) failures and functional (systematic) failures. Physical or random failures result from the degradation of one or more hardware mechanisms. It is often permanent and attributable to some component or module. For example, when a control valve is at the end of travel and not moving with the change in the control signal due to a broken shaft, the failure has occurred because of a physical failure of the component in the valve. On the other hand, functional or systematic failures are failures related in a deterministic way to a certain cause, which can be eliminated by a modification of the design or manufacturing process, operational procedures, or other relevant factors. For example, a computer program has crashed and there is no physical damage, but the system has failed. The end result is that the program is not working and a failure has occurred due to a systematic error in programming code. A major distinguishing feature between a random failure and a systematic failure is that failures arising from a random failure can be predicted with reasonable accuracy, while systematic failures, by their very nature, can not be accurately predicted. With a basic understanding of failure mechanisms, it is clear that with mechanical items like control valves, failures can be classified under the physical or random failure category, which is simpler by nature. Systematic failures are typical characteristics of programmable electronic systems or microprocessor-based devices. The reliability concept has been around the industry for a long time but due to advancements in electronics and control systems, this concept is more crucial than ever before. Because a final control element is part of the control loop, its reliability data is also being questioned by end-users. This leads to a basic question – DOES A “FINAL CONTROL ELEMENT” REQUIRE A SIL SUITABILITY RATING? To understand the exact need, let us discuss control systems used in process sector industries. Control systems are frequently separated into two categories: systems that protect the equipment, classified as “Safety Instrumented System” and systems that control the equipment, known as “Basic Process Control System.” Final control elements are part of both systems. According to IEC 61511 part 1, 3.2.3, Basic Process Control System has been defined as:
  • 5. Basic Process Control System (BPCS) A system which responds to input signals from the process, its associated equipment, other programmable systems and/or an operator and generates output signals causing the process and its associated equipment to operate in the desired manner but which does not perform any safety instrumented functions with a claimed SIL ≥ 1. This definition leads us to conclude that a BPCS is any system that has a SIL<1. Therefore, SIS systems employing Safety Instrumented Functions with a specified safety integrity level, which is necessary to achieve safety function, need to have a SIL rating equal to or above 1. This above conclusion raises some interesting questions: 1. Why are control valves to be SIL certified? Industry practices and routines generally define which valve design need to be used for a safety versus control applications. However, due to reliability attributes of control valves, especially on smaller sizes, make them suitable for safety applications. Financial considerations and maintenance aspects (using same valve design for both control and safety) are making control valves attractive for safety applications. We can categorize in three different scenarios as below, where control valves can be used as safety shut down valves. CASE 1: Control valves which are used only as an on/off single final element CASE 2: Control valves which are used in a dual purpose context (both for control and safety) CASE 3: Control valves which are used in a dual purpose context in addition (redundancy) to an on/off valve Illustration for Case1: A control valve is used for Safety Applications. In this case Control Valve is “Final Element” of Safety Instrumented Function (SIF) Loop needs to have SIL rating equal to or above 1.
  • 6. DCS (Control) Logic solver (Safety) CASE 1 Illustration for Case2 Is it possible to use single control valve common for both Safety and Control? According to IEC61511 part 1 clause 11.2.10, it states that a device used to perform part of a safety instrumented function shall not be used for basic process control purposes, where a failure of that device results in a failure of the basic process control function which causes a demand on the safety instrumented function, unless an analysis has been carried out to confirm that overall risk is acceptable. This may possibly lead to following interpretation; YES: If all possible failures of the control valve do not place a demand on any SIF than control valve may be used with no further analysis. In this case, Control Valve is “Final Element” of Safety Instrumented Function (SIF) Loop, needs to have SIL rating equal to or above 1. NO: If failure of the control valve will place a demand on a SIF than it may not be used as the only final element in that SIF. If failure of the control valve will not place a demand on SIF, for which it is intended but may place demand on any other associated SIF than the control valve may be used in a SIF only after detailed analysis. An additional step to
  • 7. further analysis will be necessary in these cases to ensure that the dangerous failure rate of the shared equipment is sufficiently low. In this case, Control Valve is “Final Element” of Safety Instrumented Function (SIF) Loop, needs to have SIL rating equal to or above 1. DCS Logic Solver (Control) (Safety) CASE 2 Illustration for Case 3 In this scenario a control valve is used to provide additional hardware fault tolerance for higher SIL application, which is similar to using a control valve for safety but with the added burden of justifying and verifying the SIF design and its final SIL value.
  • 8. DCS (Control) Logic Solver (Safety) CASE 3 2. Why are control valves that are used in a BPCS required to be SIL certified? As per IEC definition, a SIL rating is not required but it is possible that reliability data for a valve may be required. Industry or end user may require failure rate data of equipment or in loose term MTBF (Mean Time Between Failure). Essentially MTTF (mean time to fail) is the right term to define product reliability. It is usually furnished in units of hours. This is more common for electronic components, but trends are seen even for mechanical items. 3. How can MTTF provide useful data for the calculation of PFDavg (probability of failure upon demand)? MTTF can be simplified to 1/(sum of all failure rates) or equal to 1/λ. In general, components of MTTF can be categorized in the following categories: Safe Detected (λSD) Safe Undetected (λSU) Dangerous Detected (λDD) Dangerous Undetected (λDU) This data leads to useful information: MTTFs (Mean time to Fail Safe) and MTTFd (Mean time to fail Dangerous) SFF (Safe Failure Fraction) MTTFs can be computed by adding (λSD + λSU ) and reversing the number MTTFd can be computed by taking λDU and reversing the number
  • 9. SFF can be computed using the equation = 1 – (λDU ) / (λSD + λSU + λDD + λDU) or (λSD + λSU + λDD ) / (λSD + λSU + λDD + λDU). PFDAVG can be calculated using simplified equation of failure rate of equipment under control (EUC) times test interval divided by two. MTTFs calculations provide plant availability, which is a very important measurement of process plant up-time capability. A spurious trip that is considered a safe but unplanned trip may be too strenuous for piping and other equipment. Not only are production and quality affected, profits may be as well. Also, it is important to consider the higher risk associated with plant start up. IEC 61508 stresses more on “safety event”, in case of demands, which relates to dangerous undetected failures and are used to compute PFDavg. As such, mechanical equipment like valve bodies and actuators do not have any diagnostics capabilities. According to IEC 61508 part 2, table 2, with a hardware fault tolerance (HFT) of zero, they can only be used in SIL 1 applications. A digital valve controller mounted on a “Final Control Element” improves the diagnostic coverage factor, which in turn improves the SFF number, allowing the possible use of higher SIL rated applications (Per IEC 61508 part 2, table 3) by use of the Partial Stroke Test. CONCLUSION If control valve is designated to carry out a safety function then it should meet the SIL level of the Safety Instrumented System Function loop. In this case, failure rate numbers will be required to compute the total PFDAVG of the loop. The end user may possibly ask for third party certification to comply with IEC 61508 requirements to meet certain SIL suitability. However, if a control valve is designated for normal process control than as per IEC61511-3 part 1, section 3.2.3, Basic Process Control System, definition does not designate control valves to have SIL suitability. REFERENCES i) International Electrotechnical Commission, “Functional Safety - Safety instrumented systems for the process industry sector” - IEC61511 ii) International Electrotechnical Commission, “Functional Safety of Electrical / Electronic / Programmable Electronic Safety-Related Systems” - IEC61508 iii) Control Systems Safety Evaluation & Reliability – William M Goble iv) ISA Technical report ISA-TR84.00.02-2002 – Part 1
  • 10. MEMBER AREA ISA Kuwait Section with association with HONEYWELL arranged a Technical Presentation on “Plant Wide Manufacturing Execution Systems for Refineries and Petrochemical Plants” on November 5th, 2009
  • 11. MEMBER AREA ISA Meeting Notice Thursday, December 10th , 2009 Hilton Resorts – Mangaf The Kuwait Section of ISA is pleased to invite all the ISA Members in Kuwait to the Technical Presentation on December 10th, 2009 sponsored by Yokogawa Middle East . M r . Govind Raju Seshadri - Marketing Manager, Yokogawa Middle East, Bahrain Will present on : " Benefits of True Integration of DCS / SIS / SCADA " Attendance is free of charge for all ISA members. The meeting registration and reception will begin at 6:00 P.M. and the presentation will start at 6:30 P.M. The presentation and dinner will be held at the BURGAN ROOM, Hotel Hilton Resorts, Mangaf. Please confirm you attendance to muthu@rezayatkwt.com
  • 12.                                                 New  9370‐FB Series Fieldbus Barriers – A Value Proposition  Serviceability – Safety – Size – Scalability  Introduction  MTL’s 9370‐FB Series Fieldbus Barrier establishes a new benchmark for FOUNDATIONTM Fieldbus  networks in hazardous areas.  As a Zone 1‐mounted wiring hub with spur connections to intrinsically  safe fieldbus instruments,  the 9370‐FB retains the  Pluggable trunk “Live surge protector pluggable” major benefits of the  (optional) 6-spur Fieldbus Barrier modules High Energy Trunk  technique while removing  Pluggable Terminator Spur surge the drawbacks associated  protector Trunk (optional) with existing Fieldbus  terminals Barrier implementations.   The result is lower cost,  Trunk safer operation and  Terminal Assembly higher reliability  (TTA) Screw- secured, throughout the life‐cycle  housing pluggable of the fieldbus network,  spur terminals with benefits not only for  The new 12-spur 9373-FB Fieldbus Barrier in Stainless Steel enclosure with the plant operator but  Trunk and Spur surge protection fitted  also for all parties  involved in the design and installation process.  The High Energy Trunk technique provides a valuable means of connecting fieldbus instruments in  Zone 1 or Zone 0 hazardous areas to the host control system.  The Fieldbus Barrier is field‐mounted  and provides the interface between the trunk connection and intrinsically safe spurs, allowing  heavily loaded segments and long cable lengths irrespective of the Gas Group.  The spur connections  are compatible with any IS‐certified fieldbus devices complying with ‘Entity’ or ‘FISCO’ specifications.  Serviceability  The time taken to repair failed instrumentation is crucial in many process applications.  At worst  there is the risk of lost production. Even temporary loss of process visibility can lead to compromises  in product quality or manufacturing efficiency.   If, in addition, there is the risk of fire and explosion  or exposure to toxic hazards it is even more important to minimise the time an operator spends in  the process area.  Any activity in an area where flammable or toxic materials are present is complex  and expensive to organise, so the repair of field mounted equipment should be as straightforward as  possible.  In some cases, extreme environmental conditions – such as high or low temperatures –  provide an additional incentive to shorten any time spent outside the control room.      Page 1 of 5  Value Proposition_9370‐FB Series.doc 
  • 13.                                                 A guiding principle during the design of MTL’s  9370‐FB was to make it quick and easy to repair in  the event of failure.  As a result, the parts of the  system containing complex electronic circuits are  housed in “pluggable” modules that are “hot‐ swappable” in the presence of explosive  atmospheres and, due to this design, they can be  easily removed and replaced in the field. This  crucially leads to less time spent on this    Easy removal of 9377-FB Fieldbus Barrier maintenance activity in the field.  modules This is in sharp contrast with conventional Fieldbus Barrier implementations, where serviceability is  impaired by the hard‐wired nature of the field enclosure.  As a result, some attempts are usually  made in existing installations to allow some degree of maintainability in hazardous areas.  For  example, explosion‐protected isolating switches may be incorporated in the fieldbus trunk circuit, to  allow a failed Fieldbus Barrier module to be removed from the enclosure while other barrier  modules remain energised and operating.  However, this adds significantly to the amount of internal  wiring and hardware, and threatens to reduce the overall reliability of the network.  During the  replacement, interconnecting cables that are temporarily removed from the failed barrier module  must be prevented from shorting to other circuits inside the enclosure and then correctly re‐inserted  into the trunk and spur terminals on the replacement module.    As an example, the table below describes the steps required to replace a failed Fieldbus Barrier  module in both a conventional installation and in the new 9370‐FB Series.  This highlights two  important areas:  1. The time taken to affect the repair, ie. The Mean Time To Repair.  This will depend on factors  such as accessibility and environmental conditions, but plant operators will have their own  assessment of the relative times.  Repairing the conventional system is likely to take tens of  minutes, compared with less than five minutes for the 9370‐FB.  2. That a new fault could be introduced inadvertently.  The relative complexity of repairing the  conventional system adds a new risk – such as misplacing the wiring when it is re‐connected  to the replacement Fieldbus Barrier module.  This kind of fault may not become evident until  after the operator has completed the initial repair and returned from the field.      Page 2 of 5  Value Proposition_9370‐FB Series.doc 
  • 14.                                                 Maintenance activity   Conventional Fieldbus Barrier enclosure   9370‐FB Series Fieldbus Barrier  enclosure   Remove and replace  •  Remove main enclosure cover  •  Remove main  Fieldbus Barrier  enclosure cover  •  Select and operate appropriate  module   isolating switch  • Loosen barrier securing  screws  •  Open trunk terminal cover on  barrier module  • Remove and replace  barrier module  •  Remove trunk wiring from  terminals and secure  •  Tighten barrier screws  and replace enclosure  •  Remove spur wiring from  cover  terminals and secure  •  Remove and replace barrier  module  •  Reinstate trunk and spur wiring  and close trunk terminal cover  •  Operate isolating switch  •  Replace enclosure cover  Comparison of module replacement procedure for conventional FBB and new 9370‐FB  Safety  Any electrical apparatus located within a hazardous area presents a possible source of ignition for  flammable materials, so the selection process should identify and – as far as is practically possible –  minimise the risk of personal injury or damage to plant and equipment.  The design and construction  of electrical equipment intended for hazardous area use is governed by international standards, and  the user has an implied obligation not only to comply with minimum requirements, but also to select  apparatus that uses the latest technology to achieve safety.  There are two important  considerations:  1. To reduce the risk associated with routine maintenance that is properly carried out  accordance to the manufacturer’s guidelines and national codes of practice, and  2. To reduce the risk that any inadvertent or unauthorised activity could cause an unsafe  condition.  Since Fieldbus Barriers are intended to be installed hazardous areas, careful attention should be paid  to the risks of operating and maintaining them throughout their life cycle.  By definition in a ‘High Energy Trunk’ network, the voltage and current levels in the fieldbus trunk  circuit are above those permitted by Intrinsic Safety and are therefore capable of causing an  incendive arc if the circuit is broken or shorted.  MTL’s 9370‐FB Fieldbus Barrier is constructed so  that the fieldbus trunk connections are contained within a separate compartment that has its own  cover.  Once the trunk cables have been installed into the terminals within this compartment, it  should not be necessary to open it until the unit is taken out of service.       Page 3 of 5  Value Proposition_9370‐FB Series.doc 
  • 15.                                                   9373-FB (12-spur stainless steel enclosure) showing the pluggable components Another contributor to safety is that all the user‐accessible circuits and connections within the main  enclosure compartment of a 9370‐FB system are live‐workable in a hazardous area.  This eliminates  any risk of an incendive spark from an unauthorised or inadvertent maintenance activity.  Size  Reducing the size of field‐mounted apparatus such as junction boxes has advantages throughout the  life of an installation.  Right from the start, there can be savings in shipping and temporary storage  costs.  Smaller enclosures are also easier to install and maintain, and require less mechanical  infrastructure to support them.  Lids and covers are less likely to deform if they are smaller, reducing  the risk of water or dust ingress.    The 9370‐FB Series Fieldbus Barrier is  significantly smaller than the conventional  equipment it replaces.  The 12‐spur variant is  as much as 70% smaller in terms of overall  enclosure volume.  This will be of particular  benefit where space and weight are serious  considerations, for example in restricted  The 9370-FB Fieldbus Barrier is up to 70% smaller process areas or offshore installations.  than existing implementations Scalability  It is an industry maxim that the later a problem emerges in a project, the more expensive it is to put  right.  In the extreme, replacing or modifying equipment that is already installed on the plant is  many times more expensive than changing the design on paper.  It is therefore imperative that  decisions made about product selection during the ‘Front End Engineering Design’ stage of a project  should survive through to completion.  However, there are typically many uncertainties during the  early design phases that introduce risk.  For example, the area classification, field cable lengths,  quantity and location of field instruments may only be known approximately when the apparatus  needs to be specified.      Page 4 of 5  Value Proposition_9370‐FB Series.doc 
  • 16.                                                   The key to solving this problem is flexibility.  The selected solutions must be able to accommodate  changes right up until the design is frozen and, ideally, even during the commissioning stage.    Conventional Fieldbus Barrier enclosures do not lend themselves well to this process because they  are ‘customised’ according to the project requirements and cannot be finalised until all  requirements are fully defined.  Two important considerations emerge:    1.  Number of fieldbus spurs per field enclosure.  This must be known within reasonable limits,  so that the size and total number of enclosures can be established.  Conventional Fieldbus  Barriers are assembled using modules that are hard‐wired into the enclosure.  Subsequent  expansion is problematic unless the space and dedicated internal wiring for an additional  module have been provided during the initial construction.  The addition of a module in the  field can also be difficult because the trunk and spur wiring has to be correctly connected to  its terminals.    With the new 9730‐FB Series, a 12‐spur enclosure fitted with one 6‐spur module can be  specified instead of a 6‐spur enclosure if there is any uncertainty.  This attracts only a small  price increment.    Expansion to 12 active spurs is easily accomplished by plugging a second  module into the enclosure.  No other configuration is necessary, provided the fieldbus  power supply is correctly sized and the full loading of the segment has been anticipated.    2. Surge protection.  This may be specified for installations that are vulnerable to damage from  electrical surges, either as a result of atmospheric activity or transients from heavy‐current  electrical apparatus.  In order to reduce cost, normal practice would be to protect only those  parts of the fieldbus network whose loss would cause serious operational problems, and  parts that are most vulnerable.  For example, fieldbus instruments that have a relatively long  horizontal or vertical displacement from the field junction box are more likely to suffer  damage from surge currents.  Instruments in critical control loops may also warrant special  protection.    Again, these facts may still be uncertain when the design of the Fieldbus Barrier enclosures  has to be finalised, in order for their supplier to begin manufacturing.  In many cases, the full  I/O schedule is not confirmed until much later in the project.  As a result, the only options  available are to provide surge protection within the Fieldbus Barrier enclosure for all spurs,  or to manufacture different models with varying levels of protection.  But these alternatives  add cost and complexity.    What is required is the ability to fit the surge protection components where and when they  are required.  The 9370‐FB Series accomplishes this with pluggable protectors that can be  fitted into the enclosure at any stage, even after installation.  The basic enclosure design  already anticipates the need to protect the fieldbus trunk and one or more spurs, without  any additional wiring.  This adds a great deal of flexibility.      Page 5 of 5  Value Proposition_9370‐FB Series.doc