Tutorial&info,networks basics


Published on

Tutorial&info,networks basics

Published in: Technology, Education
  • Be the first to comment

  • Be the first to like this

No Downloads
Total Views
On Slideshare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide
  • 1) Physical Connection
  • 2) Logical Connection (Protocols = representation of communication forms)
  • Ping-Pong
  • 3) Application that interpret the data and display the information
  • Network Address  Network Mask Host Address
  • End User Devices Network Devices
  • كل ادارة تخاطب ما يناظرها
  • Physical  Bits Data Link  Frames Network  Packets Transport  Segments Session, Presentation, Application  Data  ( تلميحة على ضم ادارات مخرجاتها نفس المخرجات – TCP Model)
  • Insulators Conductors Semi
  • Cable Types : Coaxial Cable Shielded Twisted Pair (STP)
  • TX = Sender , RX = Receiver
  • External USB Wireless NIC
  • ديباجة Preamble =
  • Tutorial&info,networks basics

    1. 1. Networking Basics For : Level 1 – Networks and Computer Science Diploma Deanship of Community Services and Continuous Education - Imam University Based on : Cisco Networking Academy – Exploration 1 Instructor : Mahmoud Rabie
    2. 2. Grading <ul><li>15 for Attendance and Participation </li></ul><ul><li>35 for the Take-Home Open-Book Exam </li></ul><ul><li>50 for the Final Exam </li></ul>
    3. 3. Topics <ul><li>Introduction to Networking </li></ul><ul><li>Networking Fundamentals </li></ul><ul><li>Networking Media </li></ul><ul><li>Communicating over the Network </li></ul><ul><li>Application Layer Functionality and Protocols </li></ul><ul><li>Ethernet and Link Layer Addressing </li></ul>
    4. 4. Introduction to Networking Objectives
    5. 5. Requirements for Internet Connection
    6. 6. Network Interface Card (NIC)
    7. 7. TCP/IP Description and Configuration
    8. 8. Testing Connectivity with Ping
    9. 9. Web Browser and Plug-Ins
    10. 10. Troubleshooting Internet Connections
    11. 11. Network Math <ul><li>ISA will be covered well, by Dr. Baha </li></ul>
    12. 12. IP Addresses and Network Masks
    13. 13. Networking Fundamentals Objectives
    14. 14. Data Networks
    15. 15. Networking Devices
    16. 16. Network Topology
    17. 17. Network Protocols
    18. 18. Local-area Networks (LANs)
    19. 19. Wide-area Networks ( WANs )
    20. 20. Storage - Area Networks (SANS)
    21. 21. Virtual Private Networks (VPN s )
    22. 22. Importance of Bandwidth
    23. 23. Bandwidth Pipe Analogy
    24. 24. Bandwidth Highway Analogy
    25. 25. Bandwidth Measurements
    26. 26. Bandwidth Limitations
    27. 27. Using Layers to Analyze Problems
    28. 28. Using Layers to Describe Data Communication
    29. 29. OSI Model
    30. 30. OSI Layers
    31. 31. OSI Layers <ul><li>Provides connectivity and path selection between two host </li></ul><ul><li>Provides Logical address </li></ul><ul><li>No error correction, best effort delivery. </li></ul>
    32. 32. OSI Layers
    33. 33. OSI Layers
    34. 34. OSI Layers
    35. 35. OSI Layers
    36. 36. OSI Layers
    37. 37. Peer-to-Peer Communication
    38. 38. TCP/IP Model
    39. 39. Networking Media Objectives
    40. 40. Voltage
    41. 41. Resistance and Impedance
    42. 42. Current Flow
    43. 43. Circuits
    44. 44. Coaxial Cable
    45. 45. Shielded Twisted-Pair Cable (STP)
    46. 46. Unshielded Twisted Pair (UTP)
    47. 47. Unshielded Twisted Pair (UTP)
    48. 48. Unshielded Twisted Pair (UTP)
    49. 49. Single Mode Fiber
    50. 50. Multimode Fiber
    51. 51. Optical Media
    52. 52. Wireless LAN Standards
    53. 53. Internal Wireless NIC
    54. 54. Wireless USB Adapter
    55. 55. Modulation
    56. 56. Communicating over the Network
    57. 57. Network Structure <ul><li>Define the elements of communication </li></ul><ul><ul><li>3 common elements of communication </li></ul></ul><ul><ul><ul><li>message source </li></ul></ul></ul><ul><ul><ul><li>the channel </li></ul></ul></ul><ul><ul><ul><li>message destination </li></ul></ul></ul><ul><li>Define a network </li></ul><ul><ul><li>data or information networks capable of carrying many different types of communications </li></ul></ul>
    58. 58. Network Structure <ul><li>Describe how messages are communicated </li></ul><ul><ul><li>Data is sent across a network in small “ chunks ” called segments </li></ul></ul>Multiplexing
    59. 59. Network Structure <ul><li>Define the components of a network </li></ul><ul><ul><li>Network components </li></ul></ul><ul><ul><ul><li>hardware </li></ul></ul></ul><ul><ul><ul><li>software </li></ul></ul></ul>
    60. 60. Network Structure <ul><li>End Devices and their Role in the Network </li></ul><ul><ul><li>End devices form interface with human network & communications network </li></ul></ul><ul><ul><li>Role of end devices: </li></ul></ul><ul><ul><ul><li>client </li></ul></ul></ul><ul><ul><ul><li>server </li></ul></ul></ul><ul><ul><ul><li>both client and server </li></ul></ul></ul>
    61. 61. Network Structure <ul><li>Identify the role of an intermediary device in a data network and be able to contrast that role with the role of an end device </li></ul><ul><ul><li>Role of an intermediary device </li></ul></ul><ul><ul><ul><li>provides connectivity and ensures data flows across network </li></ul></ul></ul>
    62. 62. Network Structure <ul><li>Define network media and criteria for making a network media choice </li></ul><ul><ul><li>Network media </li></ul></ul><ul><ul><li>this is the channel over which a message travels </li></ul></ul>
    63. 63. Network Types <ul><li>Define Local Area Networks (LANs) </li></ul><ul><ul><li>- A network serving a home, building or campus is considered a Local Area Network (LAN) </li></ul></ul>
    64. 64. Network Types <ul><li>Define Wide Area Networks (WANs) </li></ul><ul><ul><li>LANs separated by geographic distance are connected by a network known as a Wide Area Network (WAN) </li></ul></ul>
    65. 65. Network Types <ul><li>Define the Internet </li></ul><ul><ul><li>The internet is defined as a </li></ul></ul><ul><ul><li>global mesh of interconnected networks </li></ul></ul>
    66. 66. Network Types <ul><li>Describe network representation symbols </li></ul>
    67. 67. Function of Protocol in Network Communication <ul><li>The importance of protocols and how they are used to facilitate communication over data networks </li></ul><ul><ul><li>A protocol is a set of predetermined or formal rules </li></ul></ul>
    68. 68. Function of Protocol in Network Communication <ul><li>Explain network protocols </li></ul><ul><ul><li>Network protocols are used </li></ul></ul><ul><ul><li>to allow devices to </li></ul></ul><ul><ul><li>communicate </li></ul></ul><ul><ul><li>successfully </li></ul></ul>
    69. 69. Function of Protocol in Network Communication <ul><li>Define different protocols and how they interact </li></ul>
    70. 70. Function of Protocol in Network Communication <ul><li>Technology independent Protocols </li></ul><ul><ul><li>-Many diverse types of devices can communicate using the same sets of protocols. This is because protocols specify network functionality, not the underlying technology to support this functionality. </li></ul></ul>
    71. 71. Layers with TCP/IP and OSI Model <ul><li>Explain the benefits of using a layered model </li></ul><ul><ul><li>Benefits include </li></ul></ul><ul><ul><ul><li>assists in protocol design </li></ul></ul></ul><ul><ul><ul><li>fosters competition </li></ul></ul></ul><ul><ul><ul><li>changes in one layer do not affect other layers </li></ul></ul></ul><ul><ul><ul><li>provides a common language </li></ul></ul></ul>
    72. 72. Layers with TCP/IP and OSI Model <ul><li>Describe TCP/IP Model </li></ul>
    73. 73. Layers with TCP/IP and OSI Model <ul><li>Describe the Communication Process </li></ul>
    74. 74. Layers with TCP/IP and OSI Model <ul><li>Explain protocol data units (PDU) and encapsulation </li></ul>
    75. 75. Layers with TCP/IP and OSI Model <ul><li>Describe the process of sending and receiving messages </li></ul>
    76. 76. Layers with TCP/IP and OSI Model <ul><li>Explain protocol and reference models </li></ul><ul><ul><li>A protocol model </li></ul></ul><ul><ul><li>provides a model that closely matches the structure of a particular protocol suite. </li></ul></ul><ul><ul><li>A reference model </li></ul></ul><ul><ul><li>provides a common reference for maintaining consistency within all types of network protocols and services. </li></ul></ul>
    77. 77. Layers with TCP/IP and OSI Model <ul><li>Define OSI </li></ul>
    78. 78. Layers with TCP/IP and OSI Model <ul><li>Compare OSI and TCP/IP model </li></ul>
    79. 79. Addressing and Naming Schemes <ul><li>Explain how labels in encapsulation headers are used to manage communication in data networks </li></ul>
    80. 80. Addressing and Naming Schemes <ul><li>Describe examples of Ethernet MAC Addresses, IP Addresses, and TCP/UDP Port numbers </li></ul>
    81. 81. Addressing and Naming Schemes <ul><li>Explain how labels in encapsulation headers are used to manage communication in data networks </li></ul>
    82. 82. Application Layer Functionality and Protocols
    83. 83. Applications – The Interface Between Human and Data Networks <ul><li>Explain the role of applications, services and protocols in converting communication to data that can be transferred across the data network </li></ul>
    84. 84. Applications – The Interface Between Human and Data Networks <ul><li>Define the separate roles applications, services and protocols play in transporting data through networks </li></ul>
    85. 85. <ul><li>Describe the role protocols play in networking and be able to identify several message properties that can be defined by a protocol </li></ul>Applications – The Interface Between Human and Data Networks
    86. 86. The Role of Protocols in Supporting Communication <ul><li>Describe the roles of client and server processes in data networks </li></ul>
    87. 87. The Role of Protocols in Supporting Communication <ul><li>List common Application Layers services and protocols </li></ul>
    88. 88. The Role of Protocols in Supporting Communication <ul><li>Compare and contrast client server networking with peer-to-peer networking and peer-to-peer applications </li></ul>
    89. 89. Features, Operation, and Use of TCP/IP Application Layer Services <ul><li>Describe the features of the DNS protocol and how this protocol supports DNS services </li></ul>
    90. 90. <ul><li>Describe the features of the HTTP protocol and how this protocol supports the delivery of web pages to the client </li></ul>Features, Operation, and Use of TCP/IP Application Layer Services
    91. 91. Link Layer Addressing
    92. 92. MAC Addresses and ARP <ul><li>32-bit IP address: </li></ul><ul><ul><li>network-layer address </li></ul></ul><ul><ul><li>used to get datagram to destination IP subnet </li></ul></ul><ul><li>MAC (or LAN or physical or Ethernet) address: </li></ul><ul><ul><li>used to get datagram from one interface to another physically-connected interface (same network) </li></ul></ul><ul><ul><li>48 bit MAC address (for most LANs) burned in the adapter </li></ul></ul>
    93. 93. LAN Addresses and ARP Each adapter on LAN has unique LAN address Broadcast address = FF-FF-FF-FF-FF-FF = adapter <ul><li>MAC address allocation administered by IEEE </li></ul><ul><li>Manufacturer buys portion of MAC address space (to assure uniqueness) </li></ul>1A-2F-BB-76-09-AD 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 71-65-F7-2B-08-53 LAN (wired or wireless)
    94. 94. ARP: Address Resolution Protocol <ul><li>Each IP node (Host, Router) on LAN has ARP table </li></ul><ul><li>ARP Table: IP/MAC address mappings for some LAN nodes </li></ul><ul><li>< IP address; MAC address; TTL> </li></ul><ul><ul><li>TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) </li></ul></ul>1A-2F-BB-76-09-AD 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 LAN Question: how to determine MAC address of B knowing B’s IP address?
    95. 95. ARP protocol: Same LAN <ul><li>A wants to send datagram to B, and B’s MAC address not in A’s ARP table. </li></ul><ul><li>A broadcasts ARP query packet, containing B's IP address </li></ul><ul><ul><li>Dest. MAC address = FF-FF-FF-FF-FF-FF </li></ul></ul><ul><ul><li>all machines on LAN receive ARP query </li></ul></ul><ul><li>B receives ARP packet, replies to A with its (B's) MAC address </li></ul><ul><ul><li>frame sent to A’s MAC address (unicast) </li></ul></ul><ul><li>A caches (saves) IP-to-MAC address pair in its ARP table until information becomes old (times out) </li></ul><ul><ul><li>soft state: information that times out (goes away) unless refreshed </li></ul></ul><ul><li>ARP is “plug-and-play”: </li></ul><ul><ul><li>nodes create their ARP tables without intervention from net administrator </li></ul></ul>
    96. 96. Star topology <ul><li>Nowadays, star topology prevails ( يسود ) </li></ul><ul><li>Connection choices: hub or switch </li></ul>hub or switch
    97. 97. Ethernet Frame Structure <ul><li>Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame </li></ul><ul><li>Preamble: </li></ul><ul><li>7 bytes with pattern 10101010 followed by one byte with pattern 10101011 </li></ul><ul><li>used to synchronize receiver, sender clock rates </li></ul>
    98. 98. Ethernet Frame Structure – Cont. <ul><li>Addresses: 6 bytes </li></ul><ul><ul><li>If adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol </li></ul></ul><ul><ul><li>Otherwise, adapter discards frame </li></ul></ul><ul><li>Type: indicates the higher layer protocol (mostly IP) </li></ul><ul><li>CRC: checked at receiver, if error is detected, the frame is simply dropped </li></ul>
    99. 99. Hubs <ul><li>Hubs are essentially physical-layer repeaters: </li></ul><ul><ul><li>bits coming from one link go out all other links </li></ul></ul><ul><ul><li>at the same rate </li></ul></ul><ul><ul><li>no frame buffering </li></ul></ul><ul><ul><li>Adapters not Hub detect collisions </li></ul></ul>hub
    100. 100. Interconnecting with hubs <ul><li>Backbone hub interconnects LAN segments </li></ul><ul><li>Extends max distance between nodes </li></ul><ul><li>But individual segment collision domains become one large collision domain </li></ul>hub hub hub Backbone hub
    101. 101. Switch <ul><li>Link layer device </li></ul><ul><ul><li>stores and forwards Ethernet frames </li></ul></ul><ul><ul><li>examines frame header and selectively forwards frame based on MAC destination address </li></ul></ul><ul><ul><li>when frame is to be forwarded on segment, uses CSMA/CD to access segment </li></ul></ul><ul><li>Transparent </li></ul><ul><ul><li>hosts are unaware of presence of switches </li></ul></ul><ul><li>Plug-and-play, self-learning </li></ul><ul><ul><li>switches do not need to be configured </li></ul></ul>
    102. 102. Forwarding <ul><li>How do determine onto which LAN segment to forward frame? </li></ul><ul><li>Looks like a routing problem... </li></ul>1 2 3 hub hub hub switch
    103. 103. Self Learning <ul><li>A switch has a switch table </li></ul><ul><li>Entry in switch table: </li></ul><ul><ul><li>(MAC Address, Interface, Time Stamp) </li></ul></ul><ul><ul><li>stale entries in table dropped (TTL can be 60 min) </li></ul></ul><ul><li>Switch learns which hosts can be reached through which interfaces </li></ul><ul><ul><li>when frame received, switch “learns” location of sender: incoming LAN segment </li></ul></ul><ul><ul><li>records sender/location pair in switch table </li></ul></ul>
    104. 104. Filtering/Forwarding <ul><li>When switch receives a frame: </li></ul><ul><li>index switch table using MAC dest address </li></ul><ul><li>if entry found for destination then{ </li></ul><ul><li>if dest on segment from which frame arrived then drop the frame </li></ul><ul><li>else forward the frame on interface indicated </li></ul><ul><li>} </li></ul><ul><li>else flood </li></ul>forward on all but the interface on which the frame arrived
    105. 105. Switch Example <ul><li>Suppose C sends frame to D </li></ul><ul><li>Switch receives frame from from C </li></ul><ul><ul><li>notes in bridge table that C is on interface 1 </li></ul></ul><ul><ul><li>because D is not in table, switch forwards frame into interfaces 2 and 3 </li></ul></ul><ul><li>Frame received by D </li></ul>address interface A B E G C 1 1 2 3 1 hub hub hub switch A B C D E F G H I 1 2 3
    106. 106. Switch Example <ul><li>Suppose D replies back with frame to C. </li></ul><ul><li>Switch receives frame from from D </li></ul><ul><ul><li>notes in bridge table that D is on interface 2 </li></ul></ul><ul><ul><li>because C is in table, switch forwards frame only to interface 1 </li></ul></ul><ul><li>Frame received by C </li></ul>address interface A B E G C D 1 1 2 3 1 2 hub hub hub switch A B C D E F G H I
    107. 107. Switch: Traffic Isolation <ul><li>Switch installation breaks subnet into LAN segments </li></ul><ul><li>Switch filters packets: </li></ul><ul><ul><li>same-LAN-segment frames not usually forwarded onto other LAN segments </li></ul></ul><ul><ul><li>segments become separate collision domains </li></ul></ul>collision domain collision domain collision domain hub hub hub switch
    108. 108. Switches: Dedicated Access <ul><li>Switch with many interfaces </li></ul><ul><li>Hosts have direct connection to switch </li></ul><ul><li>No collisions; full duplex </li></ul><ul><li>Switching: A-to-A’ and B-to-B’ simultaneously, no collisions </li></ul>switch A A’ B B’ C C’
    109. 109. Switches vs. Routers <ul><li>Both store-and-forward devices </li></ul><ul><ul><li>routers: network layer devices (examine network layer headers) </li></ul></ul><ul><ul><li>switches are link layer devices </li></ul></ul><ul><li>Routers maintain routing tables, implement routing algorithms </li></ul><ul><li>Switches maintain switch tables, implement filtering, learning algorithms </li></ul>Switch
    110. 110. Summary Comparison
    1. A particular slide catching your eye?

      Clipping is a handy way to collect important slides you want to go back to later.