SlideShare a Scribd company logo
1 of 7
Download to read offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org Volume 3 Issue 5ǁ May 2014 ǁ PP.39-45
www.ijesi.org 39 | Page
Comparative Study of Compression Techniques and Compressed Image
Face Recognition System
1,
Narendra R. Dhoriya , 2,
Devang U. Shah
1,
PG Research Scholar
1,
Dept. of Electronics & communication
RK University, Rajkot, India
2,
Associate Professor Dept. of Electronics & Communication,
RK University, Rajkot, India
ABSTRACT : Now a day, everyone wants to save their memory element more and more by reducing the size of
particular data which they use. So the compression of the data in any field put a great advantage to save the
memory element as well as it will also save the time to transmit the data to others. Face recognition technology
has numerous commercial as well as security applications at various places. For this, requirement of the
memory element or capacity for storage of images is one of the major problems for generation of database for
face recognition system. In this paper image compression techniques using which maximum utilization of
memory element or storage devices can be achieved are discussed. Here techniques used for image compression
for face recognition are DWT & DCT. This research is initial part of developing the algorithm to compare the
results of mostly used DWT & DCT techniques and use one of the best techniques among them for Face
Recognition.
KEYWORDS : DWT, DCT, Image Compression, Face Recognition.
I. INTRODUCTION
Face Recognition technique is one of the most widely used technology in recent era. Now a day we are
moving towards the fast, efficient and most secure network at various places like airport, railway station. For
fast and efficient in the sense of memory contain we required the image size as law as possible. For this purpose
we have to first compress the image and then store it in the database to recognize with captured image.Many
researchers have been made on image compression techniques but still there is a need for compression technique
which provides higher compression with quality reconstruction. Images contain large amount of information
that requires much storage space, large transmission bandwidths and long transmission times, therefore it is
advantageous to compress the image by storing only the essential information needed to reconstruct the image.
A common characteristic of most images is that the neighboring pixels are correlated and therefore contain
redundant information, therefore images having large areas of uniform pixel values will have large
redundancies, and conversely images that have frequent and large changes in pixel values have less redundant
information and harder to compress. Hare we use two different technologies to compress the image, first is
Discrete Wavelet Transform (DWT) and the other is Discrete Cosine Transform (DCT). After compression of
the image it is stored into the database and then can be used as the test data to compare with the trained data
image.
In the discrete wavelet transform the term „wavelet‟ comes from the fact that they integrate to zero;
they wave up and down across the axis. This property ensures that data is not over represented. A signal can be
decomposed into many shifted and scaled representations to that of the original wavelet. To isolate very fine
details in a signal, Very small wavelets can be used; on the other side very large wavelets can identify coarse
details. Here sub-band coding is used to design the DWT filter. This technique collects the signal energy into
few components by isolating the signal characteristics. Then sub-sampling operation is used to decreases the
resolution from one transformation level to the other. In the Discrete Cosine Transform, the finite sequence of
data points in terms of sum of cosine function oscillating at different frequency. The reason behind choosing the
cosine function (not sine function) is that it is more efficient in terms of fewer function are needed to
approximate typical signal. DCT is equivalent to DFT as we only have to transmit few coefficients instead of
whole DCT.The Face Recognition system is one of the best techniques for the feature extraction. The first
historical way to recognize people was based on face geometry. Face identification from a single image is a
challenging task because of variable factors like alterations in scale, location, pose, facial expression, lighting
conditions and overall appearance of the face.
Comparative Study Of Compression Techniques…
www.ijesi.org 40 | Page
All face recognition algorithms consists of two parts: a) Face localization & normalization b) Face
identification. Here onwards the use of compressed image (DWT & DCT) is done for creating the database for
face recognition.
II. DISCRETE WAVELET TRANSFORM
Wavelets are signals which are local in time and scale and generally have an irregular shape. A wavelet
is a waveform of effectively limited duration that has an average value of zero. The term „wavelet‟ comes from
the fact that they integrate to zero; they wave up and down across the axis. This property ensures that data is not
over represented. A signal can be decomposed into many shifted and scaled representations of the original
mother wavelet.
A wavelet transform can be used to decompose a signal into component wavelets. Once this is done the
coefficients of the wavelets can be decimated to remove some of the details. Wavelets have the great advantage
of being able to separate the fine details in a signal. Very small wavelets can be used to isolate very fine details
in a signal, while very large wavelets can identify coarse details. The basic idea of the wavelet transform is to
represent any arbitrary function (t) as a superposition of a set of such wavelets or basic functions. These basic
functions or baby wavelets are obtained from a single prototype wavelet called the mother wavelet, by dilation
and translation operation [2].
2.1 DWT Compression Step
 The input images are divided by 8 by 8 or 16 by 16 blocks.
 The image is then applied to the Mapper block.
 Then this mapped image is quantized in different level.
 Symbol Coder is then convert the quantized image into suitable symbols code.
 And then finally we get the compressed image of DWT.
Fig 1: The structure of DWT based compression
For the designing of filters, sub-band coding is used. Sub- band coding is a coding strategy that tries to
isolate different characteristics of a signal in a way that collects the signal energy into few components. This is
referred to as energy compaction. Energy compaction is desirable because it is easier to efficiently encode these
components than the signal. The most commonly used implementation of the discrete wavelet transform (DWT)
consists of recursive application of the low-pass/high-pass one-dimensional (1-D) filter bank successively along
the horizontal and vertical directions of the image. The low-pass filter provides the smooth approximation
coefficients while the high-pass filter is used to extract the detail coefficients at a given resolution.Both low-pass
and high-pass filters are called sub-bands. The number of decompositions performed on original image to obtain
sub bands is called sub-band decomposition level. The high pass sub-band represents residual information of the
original image, needed for the perfect reconstruction of the original image from the low-pass sub-band while the
low pass sub-band represents a down sampled low- resolution version of the original image. It is used for
computer and human vision, musical tone generation, FBI finger print compression.
The filtering step is followed by a sub-sampling operation that decreases the resolution from one transformation
level to the other. After applying the 2-D filler bank at a given level n, the detail coefficients are output, while
the whole filter bank is applied again upon the approximation image until the desired maximum resolution is
achieved. The sub-bands are labeled by using the following symbols [2].
[1] LLn is the approximation image at resolution (level decomposition) n, resulting from low-pass filtering in
the vertical and horizontal directions.
[2] HLn represents the vertical details at resolution n, and results from vertical low-pass filtering and
horizontal high-pass filtering.
[3] LHn represents the horizontal details at resolution n, and results from horizontal low-pass filtering and
vertical high-pass filtering.
[4] HHn represents the diagonal details at resolution n, and results from high-pass filtering in both directions.
Comparative Study Of Compression Techniques…
www.ijesi.org 41 | Page
Fig 2: Filtering Sub-band of wavelet transform based compression
III. DISCRETE COSINE TRANSFORM
Compressing an image is significantly different than compressing raw binary data. Of course, general
purpose compression programs can be used to compress images, but the result is less than optimal. DCT has
been widely used in signal processing of image. The one-dimensional DCT is useful in processing one-
dimensional signals such as speech waveforms. For analysis of two-dimensional (2D) signals such as images,
we need a 2D version of the DCT data, especially in coding for compression, for its near-optimal performance.
JPEG is a commonly used standard method of compression for photographic images. The name JPEG stands for
Joint Photographic Experts Group, the name of the committee who created the standard. JPEG provides for
lossy compression of images. Image compression is the application of data compression on digital images. In
effect, the objective is to reduce redundancy of the image data in order to be able to store or transmit data in an
efficient form. The best image quality at a given bit-rate (or compression rate) is the main goal of image
compression. The main objectives of this paper are reducing the image storage space, Easy maintenance and
providing security, Data loss cannot affect the image clarity, Lower bandwidth requirements for transmission,
reducing cost [5].
2.1 DCT Compression Step
 The input images are divided by 8 by 8 or 16 by 16 blocks.
 The two dimensional DCT is computed for each block.
 The DCT coefficient are than quantized, coded, and transmitted.
 The receiver decodes the quantized DCT coefficient; compute the inverse DCT of each block.
 Puts the blocks back together into a single image.
There are eight standard DCT variants, of which four are common. One of the most popular and
comprehensive continuous tone, still frame compression standards is the JPEG standard. In the JPEG base line
coding system which is based on the discrete cosine transform and is adequate for most compression
applications, the input and output images are limited to eight bits, while the quantized DCT coefficient values
are restricted to 11 bits. The discrete cosine transform (DCT) is a mathematical function that transforms digital
image data from the spatial to the frequency domain. For an M x N image, the spatial domain represents the
color value of each pixel. The frequency domain considers the image data as a two dimensional waveform and
represents the waveform in terms of its frequency components. A DCT based method is specified for “lossy‟‟
compression [5].
Fig 3: The structure of DCT based compression
Comparative Study Of Compression Techniques…
www.ijesi.org 42 | Page
The input image is N by M. f (i,j) is the intensity of the pixel in row i and column j. F (u, v) is the DCT
coefficient in row k1 and column k2 of the DCT matrix. For most images, much of the signal energy lies at low
frequencies; these appear in the upper left corner of the DCT Compression is achieved since the lower right
values represent higher frequencies, and are often small - small enough to be neglected with little visible
distortion. The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray scale level. 8 bit
pixels have levels from 0 to 255. DCT-based image compression relies on two techniques to reduce the data
required to represent the image. The first is quantization of the image's DCT coefficients; the second is entropy
coding of the quantized coefficients.
Quantization is the process of reducing the number of possible values of a quantity, thereby reducing
the number of bits needed to represent it. Entropy coding is a technique for representing the quantized data as
compactly as possible. We will develop functions to quantize images and to calculate the level of compression
provided by different degrees of quantization. We will not implement the entropy coding required to create a
compressed image file. Eye is most sensitive to low frequencies (upper left corner), less sensitive to high
frequencies (lower right corner) Standard defines 2 default quantization tables, one for luminance (above), and
one for chrominance. Quality factor in most implementations is the scaling factor for default quantization tables.
Custom quantization tables can be put in image/scan header. The purpose of the Zigzag Scan is to group low
frequency coefficients in top of vector. Maps 8 x 8 to 1 x 64 vector. Figure 4 shows the zigzag pattern for the
discrete cosine transform. [1]
Fig 4: Zigzag pattern of DCT
IV. FACE RECOGNITION SYSTEM
Face recognition is emerging as an active research area spanning several disciplines such as image
processing, pattern recognition, computer vision and neural networks. The first historical way to recognize
people was based on face geometry. There are a lot of geometric features based on the points. Face recognition
technology has numerous commercial and law enforcement applications. Below figure 5 shows the basic block
diagram of the face recognition system. [4] In recent years, face recognition has been the subject of intensive
research. With the current perceived world security situation, governments as well as businesses require reliable
methods to accurately identify individuals, without overly infringing on rights to privacy or requiring significant
compliance on the part of the individual being recognized. Face recognition provides an acceptable solution to
this problem. Face recognition has drawn attention of the research community. Face identification from a single
image is a challenging task because of variable factors like alterations in scale, location, pose, facial expression,
occlusion, lighting conditions and overall appearance of the face. With the synergy of efforts from researchers in
diverse fields including computer engineering, mathematics, neuroscience and psychophysics, different
frameworks have evolved for solving the problem of face recognition all face recognition algorithms consists of
two parts: a) Face localization & normalization b) Face identification. Partially automatic algorithms are given a
facial image and the coordinates of centre of eyes. Fully automatic algorithms are only given facial images. A
multitude of techniques have been applied to face recognition like DWT & DCT.
Fig 5: Block diagram of face recognition system
Comparative Study Of Compression Techniques…
www.ijesi.org 43 | Page
Table 1: Comparative Analysis of DWT & DCT tech [3]
PARAMETER DWT DCT
Complexity
Less
Complexity
More
Power
More
processing
power
Less
Compression
Ratio
Better
Compression
Ratio
(Adjusted)
Not Adjusted
Information
loss
Less loss of
Information
More loss of
Information
Implementation
Implementation
not Easy
Easy to
Implementation
Coefficients
Well localized
in frequency as
well as spatial
demine
Well localized
in frequency
demine
Block Artifacts
No Block
Artifacts
Distortion of
Media
V. RESULT ANALYSIS
Results obtain through the DWT compression technique is shown in below figure at different level
compression.
Fig 6: Image after first level compression by DWT
Image compression after First level, second level and third level are shown here in fig 6, fig 7 and fig 8
respectively. Moreover fig 9 shows the image compression using DCT.
Fig 7: Image after second level compression by DWT
Comparative Study Of Compression Techniques…
www.ijesi.org 44 | Page
Fig 8: Image after third level compression by DWT
Fig 9: Image compression by DCT
The Result obtain by Face Recognition Technique is also shown here. Fig 10 shows the face recognition output.
Comparative Study Of Compression Techniques…
www.ijesi.org 45 | Page
Fig 10: Face Recognition System Output
VI. CONCLUSION
The images compressed using DWT & DCT gives better efficiency and resolution in DWT as compare
to the DCT. DWT provides better image quality than DCT, especially at higher threshold values. So we can
store the images by compression and can get the better utilization of storage and transmission time. And then
these images can be used for the face recognition.
REFERENCES
[1] S. Kaur, R. SinghVirk, „DCT Based Fast Face Recognition Using PCA and ANN‟, International Journal of Advanced Research in
Computer and Communication Engineering Vol. 2, Issue 5, May 2013.
[2] M. M. H. Chowdhury, A. Khatun „Image compression using Discrete wavelet transform”, IJCSI International Journal of Computer
Science Issues, Vol. 9, Issue 4, No 1, July 2012.
[3] N. D. Maske, W. V. Patil, „ Comparison of Image Compression using Wavelet for Curvelet Transform & Transmission over
Wireless‟, International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012, ISSN 2250-3153
[4] P.D.Wadkar, M. Wankhade „Face Recognition Using Discrete Wavelet Transforms‟, International Journal of Advanced Engineering
Technology, E-ISSN 0976-3945, Vol.III, Issue I, January-March 2012.
[5] N. R. Thota, S. K. Devireddy, „Image compression using Discrete Cosine transform”, Georgian Electronic Scientific Journal:
Computer Science and Telecommunications, No.3 (17), 2008.
[6] Z. M. Hafed, M. D. Levine, „Face Recognition Using Discrete Cosine Transforms‟, International Journal of Computer Vision 43
(3), 167–188, 2001.
[7] R. C. Gonzalez, R. E. Woods, S. L. Eddins, “Digital Image Processing using MATLAB”, ISBN 81-297-0515-X, 2005.

More Related Content

What's hot

Comparative analysis of filters and wavelet based thresholding methods for im...
Comparative analysis of filters and wavelet based thresholding methods for im...Comparative analysis of filters and wavelet based thresholding methods for im...
Comparative analysis of filters and wavelet based thresholding methods for im...csandit
 
IMAGE COMPRESSION AND DECOMPRESSION SYSTEM
IMAGE COMPRESSION AND DECOMPRESSION SYSTEMIMAGE COMPRESSION AND DECOMPRESSION SYSTEM
IMAGE COMPRESSION AND DECOMPRESSION SYSTEMVishesh Banga
 
Thesis on Image compression by Manish Myst
Thesis on Image compression by Manish MystThesis on Image compression by Manish Myst
Thesis on Image compression by Manish MystManish Myst
 
Image compression techniques by using wavelet transform
Image compression techniques by using wavelet transformImage compression techniques by using wavelet transform
Image compression techniques by using wavelet transformAlexander Decker
 
Discrete cosine transform
Discrete cosine transform   Discrete cosine transform
Discrete cosine transform Rashmi Karkra
 
discrete wavelet transform
discrete wavelet transformdiscrete wavelet transform
discrete wavelet transformpiyush_11
 
Use of Discrete Sine Transform for A Novel Image Denoising Technique
Use of Discrete Sine Transform for A Novel Image Denoising TechniqueUse of Discrete Sine Transform for A Novel Image Denoising Technique
Use of Discrete Sine Transform for A Novel Image Denoising TechniqueCSCJournals
 
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT sipij
 
Image Compression using a Raspberry Pi
Image Compression using a Raspberry PiImage Compression using a Raspberry Pi
Image Compression using a Raspberry PiIRJET Journal
 
Wavelet Based Image Watermarking
Wavelet Based Image WatermarkingWavelet Based Image Watermarking
Wavelet Based Image WatermarkingIJERA Editor
 
Discrete cosine transform
Discrete cosine transformDiscrete cosine transform
Discrete cosine transformaniruddh Tyagi
 
Iaetsd wavelet transform based latency optimized image compression for
Iaetsd wavelet transform based latency optimized image compression forIaetsd wavelet transform based latency optimized image compression for
Iaetsd wavelet transform based latency optimized image compression forIaetsd Iaetsd
 

What's hot (18)

Comparative analysis of filters and wavelet based thresholding methods for im...
Comparative analysis of filters and wavelet based thresholding methods for im...Comparative analysis of filters and wavelet based thresholding methods for im...
Comparative analysis of filters and wavelet based thresholding methods for im...
 
IMAGE COMPRESSION AND DECOMPRESSION SYSTEM
IMAGE COMPRESSION AND DECOMPRESSION SYSTEMIMAGE COMPRESSION AND DECOMPRESSION SYSTEM
IMAGE COMPRESSION AND DECOMPRESSION SYSTEM
 
Thesis on Image compression by Manish Myst
Thesis on Image compression by Manish MystThesis on Image compression by Manish Myst
Thesis on Image compression by Manish Myst
 
1674 1677
1674 16771674 1677
1674 1677
 
Ec36783787
Ec36783787Ec36783787
Ec36783787
 
Image compression techniques by using wavelet transform
Image compression techniques by using wavelet transformImage compression techniques by using wavelet transform
Image compression techniques by using wavelet transform
 
Discrete cosine transform
Discrete cosine transform   Discrete cosine transform
Discrete cosine transform
 
discrete wavelet transform
discrete wavelet transformdiscrete wavelet transform
discrete wavelet transform
 
Use of Discrete Sine Transform for A Novel Image Denoising Technique
Use of Discrete Sine Transform for A Novel Image Denoising TechniqueUse of Discrete Sine Transform for A Novel Image Denoising Technique
Use of Discrete Sine Transform for A Novel Image Denoising Technique
 
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
A NOVEL ALGORITHM FOR IMAGE DENOISING USING DT-CWT
 
Jc3515691575
Jc3515691575Jc3515691575
Jc3515691575
 
www.ijerd.com
www.ijerd.comwww.ijerd.com
www.ijerd.com
 
Image Compression using a Raspberry Pi
Image Compression using a Raspberry PiImage Compression using a Raspberry Pi
Image Compression using a Raspberry Pi
 
Li3420552062
Li3420552062Li3420552062
Li3420552062
 
Wavelet Based Image Watermarking
Wavelet Based Image WatermarkingWavelet Based Image Watermarking
Wavelet Based Image Watermarking
 
IJSRDV3I40293
IJSRDV3I40293IJSRDV3I40293
IJSRDV3I40293
 
Discrete cosine transform
Discrete cosine transformDiscrete cosine transform
Discrete cosine transform
 
Iaetsd wavelet transform based latency optimized image compression for
Iaetsd wavelet transform based latency optimized image compression forIaetsd wavelet transform based latency optimized image compression for
Iaetsd wavelet transform based latency optimized image compression for
 

Viewers also liked

του νεκρού αδερφού βαλκανικές παραλλαγές
του νεκρού αδερφού βαλκανικές παραλλαγέςτου νεκρού αδερφού βαλκανικές παραλλαγές
του νεκρού αδερφού βαλκανικές παραλλαγέςEleni Kots
 
Jak se správně píše... (podle ČSN 01 6910)
Jak se správně píše... (podle ČSN 01 6910)Jak se správně píše... (podle ČSN 01 6910)
Jak se správně píše... (podle ČSN 01 6910)Jan Mach
 
Calcon elementary watson evidence
Calcon elementary watson evidenceCalcon elementary watson evidence
Calcon elementary watson evidenceBecky Russell
 
Higiena miguel mora
Higiena miguel moraHigiena miguel mora
Higiena miguel moraMiguel Mora
 
Presentation study protocol
Presentation study protocolPresentation study protocol
Presentation study protocolSteven Lips
 
hydro power plants
hydro power plantshydro power plants
hydro power plantsshreyans316
 
Management productivity tools1
Management productivity tools1Management productivity tools1
Management productivity tools1hari krishnan.n
 

Viewers also liked (10)

του νεκρού αδερφού βαλκανικές παραλλαγές
του νεκρού αδερφού βαλκανικές παραλλαγέςτου νεκρού αδερφού βαλκανικές παραλλαγές
του νεκρού αδερφού βαλκανικές παραλλαγές
 
Ppp final
Ppp finalPpp final
Ppp final
 
Jak se správně píše... (podle ČSN 01 6910)
Jak se správně píše... (podle ČSN 01 6910)Jak se správně píše... (podle ČSN 01 6910)
Jak se správně píše... (podle ČSN 01 6910)
 
Calcon elementary watson evidence
Calcon elementary watson evidenceCalcon elementary watson evidence
Calcon elementary watson evidence
 
"Motivación escolar "
"Motivación escolar ""Motivación escolar "
"Motivación escolar "
 
Higiena miguel mora
Higiena miguel moraHigiena miguel mora
Higiena miguel mora
 
Presentation study protocol
Presentation study protocolPresentation study protocol
Presentation study protocol
 
Lepší Call to Action
Lepší Call to ActionLepší Call to Action
Lepší Call to Action
 
hydro power plants
hydro power plantshydro power plants
hydro power plants
 
Management productivity tools1
Management productivity tools1Management productivity tools1
Management productivity tools1
 

Similar to G0352039045

High Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image CompressionHigh Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image Compressionsipij
 
Neural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlcNeural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlceSAT Publishing House
 
Neural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlcNeural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlceSAT Journals
 
A Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWTA Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWTIJSRD
 
Digital Image Watermarking Basics
Digital Image Watermarking BasicsDigital Image Watermarking Basics
Digital Image Watermarking BasicsIOSR Journals
 
A Survey on Implementation of Discrete Wavelet Transform for Image Denoising
A Survey on Implementation of Discrete Wavelet Transform for Image DenoisingA Survey on Implementation of Discrete Wavelet Transform for Image Denoising
A Survey on Implementation of Discrete Wavelet Transform for Image Denoisingijbuiiir1
 
Vol 13 No 1 - May 2014
Vol 13 No 1 - May 2014Vol 13 No 1 - May 2014
Vol 13 No 1 - May 2014ijcsbi
 
REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...
REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...
REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...ijcsa
 
Image compression using Hybrid wavelet Transform and their Performance Compa...
Image compression using Hybrid wavelet Transform and their  Performance Compa...Image compression using Hybrid wavelet Transform and their  Performance Compa...
Image compression using Hybrid wavelet Transform and their Performance Compa...IJMER
 
A Comprehensive lossless modified compression in medical application on DICOM...
A Comprehensive lossless modified compression in medical application on DICOM...A Comprehensive lossless modified compression in medical application on DICOM...
A Comprehensive lossless modified compression in medical application on DICOM...IOSR Journals
 
IRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting Scheme
IRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting SchemeIRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting Scheme
IRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting SchemeIRJET Journal
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compressionIAEME Publication
 

Similar to G0352039045 (20)

High Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image CompressionHigh Speed and Area Efficient 2D DWT Processor Based Image Compression
High Speed and Area Efficient 2D DWT Processor Based Image Compression
 
145 153
145 153145 153
145 153
 
G0523444
G0523444G0523444
G0523444
 
Dk33669673
Dk33669673Dk33669673
Dk33669673
 
Dk33669673
Dk33669673Dk33669673
Dk33669673
 
Neural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlcNeural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlc
 
Neural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlcNeural network based image compression with lifting scheme and rlc
Neural network based image compression with lifting scheme and rlc
 
1674 1677
1674 16771674 1677
1674 1677
 
A Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWTA Review on Image Compression using DCT and DWT
A Review on Image Compression using DCT and DWT
 
Digital Image Watermarking Basics
Digital Image Watermarking BasicsDigital Image Watermarking Basics
Digital Image Watermarking Basics
 
H0144952
H0144952H0144952
H0144952
 
A Survey on Implementation of Discrete Wavelet Transform for Image Denoising
A Survey on Implementation of Discrete Wavelet Transform for Image DenoisingA Survey on Implementation of Discrete Wavelet Transform for Image Denoising
A Survey on Implementation of Discrete Wavelet Transform for Image Denoising
 
F010232834
F010232834F010232834
F010232834
 
Vol 13 No 1 - May 2014
Vol 13 No 1 - May 2014Vol 13 No 1 - May 2014
Vol 13 No 1 - May 2014
 
REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...
REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...
REGION OF INTEREST BASED COMPRESSION OF MEDICAL IMAGE USING DISCRETE WAVELET ...
 
Bg044357364
Bg044357364Bg044357364
Bg044357364
 
Image compression using Hybrid wavelet Transform and their Performance Compa...
Image compression using Hybrid wavelet Transform and their  Performance Compa...Image compression using Hybrid wavelet Transform and their  Performance Compa...
Image compression using Hybrid wavelet Transform and their Performance Compa...
 
A Comprehensive lossless modified compression in medical application on DICOM...
A Comprehensive lossless modified compression in medical application on DICOM...A Comprehensive lossless modified compression in medical application on DICOM...
A Comprehensive lossless modified compression in medical application on DICOM...
 
IRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting Scheme
IRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting SchemeIRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting Scheme
IRJET- An Efficient VLSI Architecture for 3D-DWT using Lifting Scheme
 
Comparison and improvement of image compression
Comparison and improvement of image compressionComparison and improvement of image compression
Comparison and improvement of image compression
 

Recently uploaded

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersRaghuram Pandurangan
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 

Recently uploaded (20)

What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Generative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information DevelopersGenerative AI for Technical Writer or Information Developers
Generative AI for Technical Writer or Information Developers
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 

G0352039045

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org Volume 3 Issue 5ǁ May 2014 ǁ PP.39-45 www.ijesi.org 39 | Page Comparative Study of Compression Techniques and Compressed Image Face Recognition System 1, Narendra R. Dhoriya , 2, Devang U. Shah 1, PG Research Scholar 1, Dept. of Electronics & communication RK University, Rajkot, India 2, Associate Professor Dept. of Electronics & Communication, RK University, Rajkot, India ABSTRACT : Now a day, everyone wants to save their memory element more and more by reducing the size of particular data which they use. So the compression of the data in any field put a great advantage to save the memory element as well as it will also save the time to transmit the data to others. Face recognition technology has numerous commercial as well as security applications at various places. For this, requirement of the memory element or capacity for storage of images is one of the major problems for generation of database for face recognition system. In this paper image compression techniques using which maximum utilization of memory element or storage devices can be achieved are discussed. Here techniques used for image compression for face recognition are DWT & DCT. This research is initial part of developing the algorithm to compare the results of mostly used DWT & DCT techniques and use one of the best techniques among them for Face Recognition. KEYWORDS : DWT, DCT, Image Compression, Face Recognition. I. INTRODUCTION Face Recognition technique is one of the most widely used technology in recent era. Now a day we are moving towards the fast, efficient and most secure network at various places like airport, railway station. For fast and efficient in the sense of memory contain we required the image size as law as possible. For this purpose we have to first compress the image and then store it in the database to recognize with captured image.Many researchers have been made on image compression techniques but still there is a need for compression technique which provides higher compression with quality reconstruction. Images contain large amount of information that requires much storage space, large transmission bandwidths and long transmission times, therefore it is advantageous to compress the image by storing only the essential information needed to reconstruct the image. A common characteristic of most images is that the neighboring pixels are correlated and therefore contain redundant information, therefore images having large areas of uniform pixel values will have large redundancies, and conversely images that have frequent and large changes in pixel values have less redundant information and harder to compress. Hare we use two different technologies to compress the image, first is Discrete Wavelet Transform (DWT) and the other is Discrete Cosine Transform (DCT). After compression of the image it is stored into the database and then can be used as the test data to compare with the trained data image. In the discrete wavelet transform the term „wavelet‟ comes from the fact that they integrate to zero; they wave up and down across the axis. This property ensures that data is not over represented. A signal can be decomposed into many shifted and scaled representations to that of the original wavelet. To isolate very fine details in a signal, Very small wavelets can be used; on the other side very large wavelets can identify coarse details. Here sub-band coding is used to design the DWT filter. This technique collects the signal energy into few components by isolating the signal characteristics. Then sub-sampling operation is used to decreases the resolution from one transformation level to the other. In the Discrete Cosine Transform, the finite sequence of data points in terms of sum of cosine function oscillating at different frequency. The reason behind choosing the cosine function (not sine function) is that it is more efficient in terms of fewer function are needed to approximate typical signal. DCT is equivalent to DFT as we only have to transmit few coefficients instead of whole DCT.The Face Recognition system is one of the best techniques for the feature extraction. The first historical way to recognize people was based on face geometry. Face identification from a single image is a challenging task because of variable factors like alterations in scale, location, pose, facial expression, lighting conditions and overall appearance of the face.
  • 2. Comparative Study Of Compression Techniques… www.ijesi.org 40 | Page All face recognition algorithms consists of two parts: a) Face localization & normalization b) Face identification. Here onwards the use of compressed image (DWT & DCT) is done for creating the database for face recognition. II. DISCRETE WAVELET TRANSFORM Wavelets are signals which are local in time and scale and generally have an irregular shape. A wavelet is a waveform of effectively limited duration that has an average value of zero. The term „wavelet‟ comes from the fact that they integrate to zero; they wave up and down across the axis. This property ensures that data is not over represented. A signal can be decomposed into many shifted and scaled representations of the original mother wavelet. A wavelet transform can be used to decompose a signal into component wavelets. Once this is done the coefficients of the wavelets can be decimated to remove some of the details. Wavelets have the great advantage of being able to separate the fine details in a signal. Very small wavelets can be used to isolate very fine details in a signal, while very large wavelets can identify coarse details. The basic idea of the wavelet transform is to represent any arbitrary function (t) as a superposition of a set of such wavelets or basic functions. These basic functions or baby wavelets are obtained from a single prototype wavelet called the mother wavelet, by dilation and translation operation [2]. 2.1 DWT Compression Step  The input images are divided by 8 by 8 or 16 by 16 blocks.  The image is then applied to the Mapper block.  Then this mapped image is quantized in different level.  Symbol Coder is then convert the quantized image into suitable symbols code.  And then finally we get the compressed image of DWT. Fig 1: The structure of DWT based compression For the designing of filters, sub-band coding is used. Sub- band coding is a coding strategy that tries to isolate different characteristics of a signal in a way that collects the signal energy into few components. This is referred to as energy compaction. Energy compaction is desirable because it is easier to efficiently encode these components than the signal. The most commonly used implementation of the discrete wavelet transform (DWT) consists of recursive application of the low-pass/high-pass one-dimensional (1-D) filter bank successively along the horizontal and vertical directions of the image. The low-pass filter provides the smooth approximation coefficients while the high-pass filter is used to extract the detail coefficients at a given resolution.Both low-pass and high-pass filters are called sub-bands. The number of decompositions performed on original image to obtain sub bands is called sub-band decomposition level. The high pass sub-band represents residual information of the original image, needed for the perfect reconstruction of the original image from the low-pass sub-band while the low pass sub-band represents a down sampled low- resolution version of the original image. It is used for computer and human vision, musical tone generation, FBI finger print compression. The filtering step is followed by a sub-sampling operation that decreases the resolution from one transformation level to the other. After applying the 2-D filler bank at a given level n, the detail coefficients are output, while the whole filter bank is applied again upon the approximation image until the desired maximum resolution is achieved. The sub-bands are labeled by using the following symbols [2]. [1] LLn is the approximation image at resolution (level decomposition) n, resulting from low-pass filtering in the vertical and horizontal directions. [2] HLn represents the vertical details at resolution n, and results from vertical low-pass filtering and horizontal high-pass filtering. [3] LHn represents the horizontal details at resolution n, and results from horizontal low-pass filtering and vertical high-pass filtering. [4] HHn represents the diagonal details at resolution n, and results from high-pass filtering in both directions.
  • 3. Comparative Study Of Compression Techniques… www.ijesi.org 41 | Page Fig 2: Filtering Sub-band of wavelet transform based compression III. DISCRETE COSINE TRANSFORM Compressing an image is significantly different than compressing raw binary data. Of course, general purpose compression programs can be used to compress images, but the result is less than optimal. DCT has been widely used in signal processing of image. The one-dimensional DCT is useful in processing one- dimensional signals such as speech waveforms. For analysis of two-dimensional (2D) signals such as images, we need a 2D version of the DCT data, especially in coding for compression, for its near-optimal performance. JPEG is a commonly used standard method of compression for photographic images. The name JPEG stands for Joint Photographic Experts Group, the name of the committee who created the standard. JPEG provides for lossy compression of images. Image compression is the application of data compression on digital images. In effect, the objective is to reduce redundancy of the image data in order to be able to store or transmit data in an efficient form. The best image quality at a given bit-rate (or compression rate) is the main goal of image compression. The main objectives of this paper are reducing the image storage space, Easy maintenance and providing security, Data loss cannot affect the image clarity, Lower bandwidth requirements for transmission, reducing cost [5]. 2.1 DCT Compression Step  The input images are divided by 8 by 8 or 16 by 16 blocks.  The two dimensional DCT is computed for each block.  The DCT coefficient are than quantized, coded, and transmitted.  The receiver decodes the quantized DCT coefficient; compute the inverse DCT of each block.  Puts the blocks back together into a single image. There are eight standard DCT variants, of which four are common. One of the most popular and comprehensive continuous tone, still frame compression standards is the JPEG standard. In the JPEG base line coding system which is based on the discrete cosine transform and is adequate for most compression applications, the input and output images are limited to eight bits, while the quantized DCT coefficient values are restricted to 11 bits. The discrete cosine transform (DCT) is a mathematical function that transforms digital image data from the spatial to the frequency domain. For an M x N image, the spatial domain represents the color value of each pixel. The frequency domain considers the image data as a two dimensional waveform and represents the waveform in terms of its frequency components. A DCT based method is specified for “lossy‟‟ compression [5]. Fig 3: The structure of DCT based compression
  • 4. Comparative Study Of Compression Techniques… www.ijesi.org 42 | Page The input image is N by M. f (i,j) is the intensity of the pixel in row i and column j. F (u, v) is the DCT coefficient in row k1 and column k2 of the DCT matrix. For most images, much of the signal energy lies at low frequencies; these appear in the upper left corner of the DCT Compression is achieved since the lower right values represent higher frequencies, and are often small - small enough to be neglected with little visible distortion. The DCT input is an 8 by 8 array of integers. This array contains each pixel's gray scale level. 8 bit pixels have levels from 0 to 255. DCT-based image compression relies on two techniques to reduce the data required to represent the image. The first is quantization of the image's DCT coefficients; the second is entropy coding of the quantized coefficients. Quantization is the process of reducing the number of possible values of a quantity, thereby reducing the number of bits needed to represent it. Entropy coding is a technique for representing the quantized data as compactly as possible. We will develop functions to quantize images and to calculate the level of compression provided by different degrees of quantization. We will not implement the entropy coding required to create a compressed image file. Eye is most sensitive to low frequencies (upper left corner), less sensitive to high frequencies (lower right corner) Standard defines 2 default quantization tables, one for luminance (above), and one for chrominance. Quality factor in most implementations is the scaling factor for default quantization tables. Custom quantization tables can be put in image/scan header. The purpose of the Zigzag Scan is to group low frequency coefficients in top of vector. Maps 8 x 8 to 1 x 64 vector. Figure 4 shows the zigzag pattern for the discrete cosine transform. [1] Fig 4: Zigzag pattern of DCT IV. FACE RECOGNITION SYSTEM Face recognition is emerging as an active research area spanning several disciplines such as image processing, pattern recognition, computer vision and neural networks. The first historical way to recognize people was based on face geometry. There are a lot of geometric features based on the points. Face recognition technology has numerous commercial and law enforcement applications. Below figure 5 shows the basic block diagram of the face recognition system. [4] In recent years, face recognition has been the subject of intensive research. With the current perceived world security situation, governments as well as businesses require reliable methods to accurately identify individuals, without overly infringing on rights to privacy or requiring significant compliance on the part of the individual being recognized. Face recognition provides an acceptable solution to this problem. Face recognition has drawn attention of the research community. Face identification from a single image is a challenging task because of variable factors like alterations in scale, location, pose, facial expression, occlusion, lighting conditions and overall appearance of the face. With the synergy of efforts from researchers in diverse fields including computer engineering, mathematics, neuroscience and psychophysics, different frameworks have evolved for solving the problem of face recognition all face recognition algorithms consists of two parts: a) Face localization & normalization b) Face identification. Partially automatic algorithms are given a facial image and the coordinates of centre of eyes. Fully automatic algorithms are only given facial images. A multitude of techniques have been applied to face recognition like DWT & DCT. Fig 5: Block diagram of face recognition system
  • 5. Comparative Study Of Compression Techniques… www.ijesi.org 43 | Page Table 1: Comparative Analysis of DWT & DCT tech [3] PARAMETER DWT DCT Complexity Less Complexity More Power More processing power Less Compression Ratio Better Compression Ratio (Adjusted) Not Adjusted Information loss Less loss of Information More loss of Information Implementation Implementation not Easy Easy to Implementation Coefficients Well localized in frequency as well as spatial demine Well localized in frequency demine Block Artifacts No Block Artifacts Distortion of Media V. RESULT ANALYSIS Results obtain through the DWT compression technique is shown in below figure at different level compression. Fig 6: Image after first level compression by DWT Image compression after First level, second level and third level are shown here in fig 6, fig 7 and fig 8 respectively. Moreover fig 9 shows the image compression using DCT. Fig 7: Image after second level compression by DWT
  • 6. Comparative Study Of Compression Techniques… www.ijesi.org 44 | Page Fig 8: Image after third level compression by DWT Fig 9: Image compression by DCT The Result obtain by Face Recognition Technique is also shown here. Fig 10 shows the face recognition output.
  • 7. Comparative Study Of Compression Techniques… www.ijesi.org 45 | Page Fig 10: Face Recognition System Output VI. CONCLUSION The images compressed using DWT & DCT gives better efficiency and resolution in DWT as compare to the DCT. DWT provides better image quality than DCT, especially at higher threshold values. So we can store the images by compression and can get the better utilization of storage and transmission time. And then these images can be used for the face recognition. REFERENCES [1] S. Kaur, R. SinghVirk, „DCT Based Fast Face Recognition Using PCA and ANN‟, International Journal of Advanced Research in Computer and Communication Engineering Vol. 2, Issue 5, May 2013. [2] M. M. H. Chowdhury, A. Khatun „Image compression using Discrete wavelet transform”, IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012. [3] N. D. Maske, W. V. Patil, „ Comparison of Image Compression using Wavelet for Curvelet Transform & Transmission over Wireless‟, International Journal of Scientific and Research Publications, Volume 2, Issue 5, May 2012, ISSN 2250-3153 [4] P.D.Wadkar, M. Wankhade „Face Recognition Using Discrete Wavelet Transforms‟, International Journal of Advanced Engineering Technology, E-ISSN 0976-3945, Vol.III, Issue I, January-March 2012. [5] N. R. Thota, S. K. Devireddy, „Image compression using Discrete Cosine transform”, Georgian Electronic Scientific Journal: Computer Science and Telecommunications, No.3 (17), 2008. [6] Z. M. Hafed, M. D. Levine, „Face Recognition Using Discrete Cosine Transforms‟, International Journal of Computer Vision 43 (3), 167–188, 2001. [7] R. C. Gonzalez, R. E. Woods, S. L. Eddins, “Digital Image Processing using MATLAB”, ISBN 81-297-0515-X, 2005.