International Journal of Mathematics and Statistics Invention (IJMSI)
Upcoming SlideShare
Loading in...5
×
 

Like this? Share it with your network

Share

International Journal of Mathematics and Statistics Invention (IJMSI)

on

  • 240 views

International Journal of Mathematics and Statistics Invention (IJMSI) is an international journal intended for professionals and researchers in all fields of computer science and electronics. IJMSI ...

International Journal of Mathematics and Statistics Invention (IJMSI) is an international journal intended for professionals and researchers in all fields of computer science and electronics. IJMSI publishes research articles and reviews within the whole field Mathematics and Statistics, new teaching methods, assessment, validation and the impact of new technologies and it will continue to provide information on the latest trends and developments in this ever-expanding subject. The publications of papers are selected through double peer reviewed to ensure originality, relevance, and readability. The articles published in our journal can be accessed online.

Statistics

Views

Total Views
240
Views on SlideShare
240
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

International Journal of Mathematics and Statistics Invention (IJMSI) Document Transcript

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 1 Issue 2 ǁ December. 2013ǁ PP-25-30 Multidimensional Mellin Transforms Involving I-Functions of Several Complex Variables 1, Prathima J , 2,T.M.Vasudevan Nambisan Research scholar, SCSVMV, Kanchipuram & Department of Mathematics, Manipal Institute of Technology, Manipal, Karnataka, India 2, Department of Mathematics, College of Engineering, Trikaripur, Kerala, INDIA. ABSTRACT : This paper provides certain multiple Mellin transforms of the product of two I-functions of r variables with different arguements. In the first instance, a basic integral formula for multiple Mellin transform of I-function of “r” variables is obtained. Thendouble Mellin transform due to Reed has been employed in evaluating the integrals involving the product of two I- functions of r variables. This formula is very much useful in the evaluation of some integrals and integral equations involving I-functions. 2010 Mathematics Subject Classification: 33E20, 44A20 KEYWORDS: I-function, Mellin Barnes contour integral, H-function, Mellin transform. I. THE I-FUNCTION OF SEVERAL COMPLEX VARIABLES The generalized Fox’s H-function, namely I-function of ‘r’ variables is defined and represented in the following manner [3]. 0,n:m ,n ;...;mr ,nr 1 1 r ,qr I[z1,…,zr]= I p,q:p 1,q 1;...;p = 1 2πi  r z  1  z r    1 a j;  j b j;  j              1 1 1  r  r  r ; A j : c j , j ; Cj ; ...; c j ,  j ; C j r  1     r 1 1 1 ; Bj : d j , j ; Dj , ...,  j , ...,  j    ; ...; d j r  r , j ; Dj r  s s  ...  θ1 s1 ...θ r s r  s1 ,...,s r z11 ...z r r ds1 ...ds r L1 Lr (1.1) where φ s1,...,s r  and θi si  , I = 1,…,r are given by    n Aj r i   Γ 1-a j +  α j s i j=1 i=1  s1 ,...,s r = q B p r i  r i Aj j  Γ  Γ 1-b j +  β j s i a j -  α j si j=1 i=1 j=n+1 i=1  (1.2)     i i  mi D   i   i  ni C j i i j  Γ d j -δ j s i  Γ 1-c j +γ j s i j=1 j=1 θi si = i i qi pi Dj Cj i i i i  Γ  Γ 1-d j +δ j s i c j -γ j s i j=mi +1 j=n i +1           (1.3) i=1, 2,…,r Also  z i  0 for I = 1,…,r;    i  1 ; an empty product is interpreted as unity; the parameters mj, nj,pj, qj (j=1,…,r), n, p, q qj are non-negetive integers such that www.ijmsi.org 25 | P a g e
  • 2. Multidimensional Mellin Transforms Involving… 0  n  p , q  0, 0  n j  p j , 0  m j  q j i  a j  j=1,...,p  , b j  j=1,...,q  , c j  j i  (j=1,…,r) (not all zero simultaneously).  j=1,...,pi , i 1,...,r  and d j   j=1,...,qi , i 1,...,r  are complex numbers. i  j=1,...,p, i=1,...,r  ,  j   j=1,...,q, i=1,...,r  ,  j   j=1,...,pi , i 1,...,r  and     j=1,...,qi , i 1,...,r  are j i i i assumed to be positive quantities for standardisation purpose. i Aj  j=1,...,p  , B j  j=1,...,q  , C j  j=1,...,pi , i 1,...,r  and D j   j=1,...,qi , i 1,...,r  of i  The  gamma functions involved in (1.2) and (1.3) may take non-integer values. The contour Li in the complex si - plane is of Mellin-Barnes type which runs from exponents with indentation, if necessary, in such a manner that all singularities of C j  i the right and    i  i  1  c j   j si , j  1, ..., n i lie to the left of Li  i  Dj c  i   to c  i various ,(c real),  i i  d j   j si , j  1, ..., m i lie to . Following the results of Braaksma[1] the I-function of ‘r’ variables is analytic if i  p pi i  q qi i  i  i  i  i   A j j   B j  j   C j  j   D j  j j 1 j 1 j 1 j 1 II.  0, i  1, ..., r (1.4) CONVERGENCE CONDITIONS The integral (1.1) converges absolutely if   arg z k where 1 2  k  , k  1, ..., r (2.1) qk pk k  q  k  mk  k   k   k   k  nk  k   k  k  k    p  Cj  j  k    A j j   B j  j   D j  j   Dj  j   Cj  j   0  j 1 j 1 j 1 j mk 1 j 1 j nk 1   (2.2)   And if arg z k conditions. (i) k  1 2  k  , and  k  0, k  1, ..., r then integral (1.1) converges absolutely under the following  k  0,  k   1 where  k is given by (1.4) and p 1   j 1  2  k  a j  A j  j1  1    b j  B j  j1  1   c jk   C jk       2  2      p q  qk  1   d k   j j 1  2     k  D j , k  1, ..., r (2.3) (ii)    k  0 with sk   k  itk  k and tk are real, k 1, ..., r ,  k are so chosen that for tk   we have  k   k k   1 We have discussed the proof of convergent conditions in our earlier paper [3]. Remark 1 i  If D j  1  j  1, ..., mi , i  1, ..., r  in (1.1), then the function will be denoted by  I z1 , ..., z r  www.ijmsi.org 26 | P a g e
  • 3. Multidimensional Mellin Transforms Involving…    1 r  z1  a j ; j ,..., j ;A j  :  p 1 0,n:m1 ,n1 ;...;m r ,n r  I   p,q:p1 ,q1 ;...;p r ,q r    1 1 1  1  r    1 1  , z r , j ;D j  ;...;  b j ; j ,...,  j ;B j  :  d j , j ;1  d  q 1  m1 m1 1 j q1 1  1  1 1 1 cj , j ;Cj  ; ...; p1 1  cj r r , j r  ;Cj  pr  d  r  ,  r  ;1  r r r   ,  j   d , j ;D j  j   m r m r 1  j q r 1 = 1 2πi  r             s s  ...  θ1 s1 ...θr s r  s1 ,...,s r z11 ...z r r ds1 ...ds r L1 Lr (2.4) where i mi  i   i  ni C j i  i   Γ d j -δ j s i  Γ 1-c j +γ j s i j=1 j=1 θi s i = , i  1, ..., r i  i qi pi Dj Cj i  i  i  i   Γ  Γ 1-d j +δ j s i c j -γ j s i j=mi +1 j=n i +1           (2.5) Remark 2 i  i  If C j  1  j  1, ..., ni , i  1, ..., r  , D j  1  j  1, ..., mi , i  1, ..., r  and n=0 in (1.1), then the function will be denoted by I  z , ..., z r 1 1     1 1 1  1  r    1 1   z1  a j ; j ,..., j ;A j  :  c j , j ;1  ,  c , j ;C j  ;...;  p 1 n1 n11 j p1  1 0,0:m1 ,n1 ;...;m r ,n r  I  p,q:p1 ,q1 ;...;p r ,q r     1 1 1  1  r    1 1  z r  b j ; j ,...,  j ;B j  :  d j , j ;1  ,  d , j ;D j  ;...;  q 1  m1 m11 j q1 1  1   c  ,   ;C    n r n r 1 pr    d  r  ,  r  ;1 ,  d  r  ,  r  ;D r     j   j j j  m r m r 1  j q r  1  r r  c j ,  j ;1 r , r j j r j (2.6) where   1 s1 ,...,s r =  1   q B p r i  r i  Aj j  Γ  Γ 1-b j +  β j s i a j -  α j si j=1 i=1 j=n+1 i=1        mi  i   i  ni i  i   Γ d j -δ j si  Γ 1-c j +γ j si j=1 j=1 θi s i = i i qi pi Dj Cj i i i  i   Γ  Γ 1-d j +δ j s i c j -γ j s i j=mi +1 j=ni +1    (2.7)  (2.8) i=1,2,…,r Definition Mellin transform of a function f(x) is defined as     x  ; s 0 x s1 f  x dx (2.9) M f III. RESULT USED We shall use the following result given by Reed [4] www.ijmsi.org 27 | P a g e
  • 4. Multidimensional Mellin Transforms Involving…   s 1 t 1  1 y   x  2 0 0   2 i   1  i   2  i    1  i   2  i    g s, t x     s t y dsdt  dxdy  g s , t   (2.10) Basic formula for the multiple Mellin transform of the I-function of r variables   s 1 s 1    ...  x11 ...x r r I1 t1x11 ,...,t r x r r  dx1...dx r   0 0 -s1 -sr  -s1   -s r   -s1 -s r  1 r = θ1   ...θr  σ  1   ,...,   t1 ...t r 1...1  σ1   r  1 r  1 (3.1)  -s -s where 1  1 ,..., r  1 r   and   -si  , i 1, 2, ..., r are given by (2.7) and (2.8) respectively. The condition given  σi  θi  by (1.4) and the convergence conditions given in section 2 are assumed to be satisfied and   d  i     1 - c  i     j    s i  i min   j  ,  i min 1 j mi     i   1 j n i     i     j    j  i  1, 2, ..., r, Proof Express the I-function of ‘r’ variables involved in the left hand side of (3.1) in terms of Mellin-Barnes type contour integral (1.1), i i = -u i ,i=1,2,...,r and interpret the resulting integral with the help of Reeds theorem (2.10) to get the required result. Special cases i When all the exponents Aj  j=1,...,p  , B j  j=1,...,q  , C j  j= ni +1,...,pi , i 1,...,r  and D j   j= mi +1,...,qi , i 1,...,r  are i equal to unity in (3.1), we get the multiple Mellin transform of H-function of several variables where H-function of several variables is defined by Srivastava and Panda [6]. If we put r = 2 in (3.1) we get double Mellin transform of I-function of two variables where I-function of two variables is defined by Shantha,Nambisan and Rathie[5]. Further putting all exponents unity, it reduces to the double Mellin transform of H-function of two variables where H-function of two variables is defined by Mittal and Gupta [2] . IV. MULTIPLE MELLIN TRANSFORM OF THE PRODUCT OF TWO I-FUNCTIONS OF ‘R’ VARIABLES    1  1    ...  x1 1 ...x r r I1 s1x11 ,...,s r x r r  0 0 1 = 1 ... r  - 1 1 t1  - r r ...t r I     I1  t1x1 1 ,...,t r x r r     dx1…dxr   0, 0 : m1  n1 , m1  n1 ; ...; m r  nr , mr  n r   p  q, p  q : p1  q1 , p1  q1 ; ...; pr  qr , pr  q r  - 1 s t 1  1 1  r  - r s r t r C : C1 ;...;C r D : D1 ;...;D r       (4.1) where C 1  1  r  a j ;α j ,...,α j ; A j  , p r    i  1 1 r  r    i  1-bj -i=1  βj ,  βj ,...,  βj ; Bj   q i 1 r 1 www.ijmsi.org 28 | P a g e
  • 5. Multidimensional Mellin Transforms Involving… Ci  1               i i c j ,γ j ;1 ni +1 D 1 Di   1 ni  i   i  1-dj , -δ j 1 i i i c j ,γ j ; C j 1  r  b j ;β j ,...,β j ; B j  mi +1 i i  ;1  mi ,   i   i   i i  i i    1-dj -δj  ,δj  ; Dj  qi i i m+1  i 1, ..., r , , q r    i  1 1 r  r    i  1-aj -i=1  αj ,  αj ,...,  αj ; Aj  p i 1 r 1 1-cj , mi i i  ,δj pi                 i i d j ,δ j ;1 i i i  -γj 1 i i i d j ,δ j ; D j i  i ,γj i i i  ;1  ni ,  i  i   i i  i i    1-cj -γj  ,γj  ; Cj  , pi i i n +1  i , i  1, ..., r qi The integral (4.1) is valid under the following sets of conditions. (a) The conditions, modified appropriately(if necessary), given in section 3 are satisfied by both the I-functions of r variables in the integrand of (4.1). (b) i > 0, i >0, i=1,2,...,r    i     i    dj d  - i min   j   <  si  and - i min    i i  1 j mi   δ j     1 j m i   δj        1-c i  j < i min   i  1 j n i   γ   j   1-c i      i min   j  , i=1,…,r  1 j ni   γ i      j  Proof Express the Express the function  I1 s1x11 ,...,s r x r r    involved in the integrand of (4.1) as Mellin-Barnes  type contour integral using (2.6), change the order of integrations, change the order of integrations, evaluate the inner integrals using (3.1) and interpret the result with the help of (1.1) to obtain the right hand side of (4.1). Special cases    1  1    ...  x1 1 ...x r r I1 s1x1 1 ,...,s r x r r    0 0 1 = 1 ... r  - 1 1 t1  - r r ...t r I    I1  t1x1 1 ,...,t r x r r     dx1…dxr   0, 0 : m1  m1 , n1  n1 ; ...; m r  mr , nr  n r   p  p, q  q : p1  p1 , q1  q1 ; ...; pr  pr , q r  qr  1 s t 1  1 1  r  r sr t r C : C1 ;...;C r D : D1 ;...;D r       (4.2) where C 1  1  r  a j ;α j ,...,α j ; A j  , p r    i  1 1 r  r    i  aj  i=1   j ,   j ,...,   j ; Aj   p i 1 r 1 www.ijmsi.org 29 | P a g e
  • 6. Multidimensional Mellin Transforms Involving… Ci  1                 i i c j ,γ j ;1 ni +1 D 1 Di   1 ni i cj , i + j 1  r  b j ;β j ,...,β j ; B j mi +1 i i  ;1 ni ,   i   i   i  i  i  i    cj + j  , j  ; Cj  pi i i n +1  i i 1, ..., r ,  , q r    i  1 1 r  r    i  bj  i=1   j ,   j ,...,   j ; Bj  q  i 1 r 1 dj , mi i , j pi                 i i d j ,δ j ;1 i 1 i i i c j ,γ j ; C j i i i + j 1 i i i d j ,δ j ; D j i i i , j i i  ;1  mi ,   i   i   i  i  i  i    dj + j  , j  ; Dj  , qi i i m +1  i , i  1, ..., r qi The conditions of validity of (4.2) are i > 0, i >0, i=1,2,...,r   1-c i     d  i    j  -  min   j   <  s and - i min     i   i 1 j mi    i     i  1 j n i      j    δ j    d  i     1-c i   j    min   j  , i=1,…,r < i min    i   i 1 j ni    i   1 j mi      j    γ j  Proof of (4.2) is similar to that of (4.1). When all the exponents are equal to unity in (4.1)and (4.2), we get the multiple Mellin transform of product of two H-functions of several variables. In (4.1) and (4.2) if we put r = 2 we get double Mellin transforms of product of two I-functions of two variables. Further putting all exponents unity it reduces to the double Mellin transforms of product of two H-functions of two variables. REFERENCES [1] [2] [3] [4] [5] [6] Braaksma. B. L. J., Asymptotic expansions and analytic continuations for a class of Barnes-integrals, Compositio Math. 15,239-341, (1964) Mittal P.K and Gupta K.C., An integral involving generalized function of two variables, Proc.Indian Acad.Sci Sect. A 75, 117-123, (1972). Prathima J, Vasudevan Nambisan T.M., Shantha Kumari K A study of I-function of several complex variables, International journal of Engineering Mathematics, Hindawi Publications (In Press). Reed I.S, The Mellin type of double integral, Duke Math.J. 11(1944), 565-575. Shanthakumari.K,Vasudevan Nambisan T.M,Arjun K.Rathie: A study of the I-function of two variables,Le Matematiche(In Press),(2013). Also see arXiv:1212.6717v1 [math.CV].30Dec2012 Srivastav H.M,Panda R:Some bilateral generating functions for a class of generalized hypergeometric polynomials,J.Reine Angew.Math.17,288 ,265-274,(1976). www.ijmsi.org 30 | P a g e