Your SlideShare is downloading. ×
A02402001011
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×

Saving this for later?

Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime - even offline.

Text the download link to your phone

Standard text messaging rates apply

A02402001011

62
views

Published on

International Journal of Mathematics and Statistics Invention (IJMSI) is an international journal intended for professionals and researchers in all fields of computer science and electronics. IJMSI …

International Journal of Mathematics and Statistics Invention (IJMSI) is an international journal intended for professionals and researchers in all fields of computer science and electronics. IJMSI publishes research articles and reviews within the whole field Mathematics and Statistics, new teaching methods, assessment, validation and the impact of new technologies and it will continue to provide information on the latest trends and developments in this ever-expanding subject. The publications of papers are selected through double peer reviewed to ensure originality, relevance, and readability. The articles published in our journal can be accessed online.

Published in: Technology, Business

0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
62
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
0
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  • 1. International Journal of Mathematics and Statistics Invention (IJMSI) E-ISSN: 2321 – 4767 P-ISSN: 2321 - 4759 www.ijmsi.org Volume 2 Issue 4 || April. 2014 || PP-01-11 www.ijmsi.org 1 | P a g e Relationships among determining matrices, partials of indices of control systems matrices and systems coefficients for single–delay linear neutral control systems. Ukwu Chukwunenye Department of Mathematics University of Jos P.M.B 2084 Jos, Nigeria ABSTRACT: This paper obtained various relationships among determining matrices, partial derivatives of indices of control systems matrices of all orders, as well as their relationships with systems coefficients for single – delay autonomous neutral linear differential systems through a sequence of lemmas, theorems and corollaries and the exploitation of key facts about permutations. The proofs were achieved using appropriate combinations of summation notations, multinomial distribution, change of variables techniques and deft deployment of skills in the differentiation of matrix functions of several variables. KEYWORDS- Determining, Feasible, Generalized, Index, Systems. I. INTRODUCTION The importance of the relationships among determining matrices, indices of control systems matrices and systems coefficient stems from the fact that these relationships pave the way for the determination of Euclidean controllability and compactness of cores of Euclidean targets. This paper brings fresh perspectives to bear on such relationships. The derivation of necessary and sufficient condition for the Euclidean controllability of system (1) below on the interval 1[0, ],t using determining matrices depends on (i) Obtaining workable expressions for the determining equations of the n n matrices for 1: 0, 0, 1,j t jh k    (ii) Showing that = ( h),for j: where (iii) showing that is a linear combination of 0 1 1( ), ( ), , ( ); 0, , ( 1) .nQ s Q s Q s s h n h    Our objective is to prosecute task (ii) and (iii). Tasks (i) has been prosecuted in Ukwu [1]. II. IDENTIFICATION OF WORK-BASED DOUBLE-DELAY AUTONOMOUS CONTROL SYSTEM We consider the single-delay autonomous neutral control system:                 1 0 1 ; 0 (1) , , 0 , 0 (2) x t A x t h A x t A x t h B u t t x t t t h h              where 1 0 1, ,A A A are n n constant matrices with real entries, B is an n m constant matrix with real entries. The initial function  is in   , 0 , n C h R , the space of continuous functions from [ , 0]h into the real n-dimension Euclidean space, n R with norm defined by     , 0 sup t h t     , (the sup norm). The
  • 2. Relationships among determining matrices, partials of indices of… www.ijmsi.org 2 | P a g e control u is in the space   10, , n L t R , the space of essentially bounded measurable functions taking  0 1, t into n R with norm    ess u t t t sup ( ) [ , ]0 1 . Any control   10, , n u L t R will be referred to as an admissible control. For full discussion on the spaces 1 and (or )p p pC L L , {1,2,..., }p  , see Chidume [2 and 3] and Royden [4]. 1.2 Preliminaries on the partial derivatives ( , ) , 0,1, k k X t k       Let  t t, ,  0 1 . For fixed t, let  , t   satisfy the matrix differential equation:        1 0 1, , , , (3)X t X h t A X t A X h t A              for 0 , , 0,1,...t t k h k      where    ; 0;, nI t tX t     See Chukwu [5 and 6], Hale [7] and Tadmore [8] for properties of   t,  . Of particular importance is the fact that  ,t   is analytic on the intervals     t j h t j h j t j h1 1 11 01 1 0      , , , ,..., . Any such       t j h t j h1 11 , is called a regular point of     t, . Let    , k t denote  1, k k t      , the th k partial derivative of  1,t with respect to , where  is in   t j h t j h j r1 11 01   , ; , ,..., , for some integer r such that  t r h1 1 0   . Write      1 1 1, , k k t t         . Define:              1 1 1 1 1 1 1 1 , , , , , (4) for 0,1,...; 0,1,...; 0, k k k t jh t t t j h t t j h t k j t jh               where     1 1, k X t j h t   and     1 1 1, ,k X t t j h t   denote respectively the left and right hand limits of    1, k X t at   t j h1 . Hence:      ( ) 1 1 1 1 ( 1) 1 1 ( ) (5), lim ,k k X t jh t j h t jh X t jh t t                  1 ( ) 1 1 1 ( 1) 1 1 ,lim( ) , (6) k k X t jh t jh t j h tX t jh t            
  • 3. Relationships among determining matrices, partials of indices of… www.ijmsi.org 3 | P a g e 2.2 Definition, existence and uniqueness of Determining matrices for system (1) Let ( )kQ s be then n n matrix function defined by:        1 1 0 1 1 1 (7)k k k kQ s A Q s h A Q s AQ s h        for 1,2, ; 0,k s  with initial conditions:  0 0 (8)nQ I   0; 0 or 0 (9)kQ s k s   These initial conditions guarantee the unique solvability of (7). Cf.Gabasov and Kirillova [9]. III. MAIN RESULTS The investigation in this section will be carried out through the following sequence of results. 3.1 Theorem relating ( ) 1 1(( ), ) to ( )k kX t jh t Q jh  1 ( ) 1 1 For all nonnegative integers : 0, and for {0,1, ,}: ( , ) ( 1) ( ) (10)k k k j t jh k X t jh t Q jh         Proof ( ) 1 1 1 1 1 0If 0,then ( , ) ( , ) ( ) ( 1) ( ),with 0.k j k kk X t jh t X t jh t A Q jh Q jh k           1 ( ) ( 1) 1 1 1 1 1 0 0 1 (1) 1 1 1 1 1 0 0 1 1 0 1 1 By lemma 2.7 of [1], (( ), ) (( ( ( )) ), ) , 1 (( ), ) (( ( ( )) ), ) (( ( ) ), ) (( ( ( 1)) ), j k k r i r i j r i r i X t jh t X t j r i h t A A k X t jh t X t j r i h t A A X t j r h t A X t j r h t                                                 1 1 0 1 1 0 1 1 1 0 1 0 0 ) (( ( ) ), ) (( ( 1) ), ) j r r j j r r r r A A X t j r h t A A X t j r h t A A                             1 1 1 0 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 0 1 0 1 (( ( ) ), ) (( ( 1) ), ) (since (( ( 1) , ) 0, for ) (by vii of lemma 2.4 of [1] ) j j r r r r j j j r r j r r r r j r j X t j r h t A A X t j r h t A A X t j r h t r j A A A A A A A A A                                                         1 1 0 1 1 1 1 1 0 1 1 ( 1) 1 1 1 0 1 0 1 1 1 1 0 0 1 ( 1) 1 0 1 0 1 1 1 1 0 1 0 0 (by change of variables) ( ) ( j j r r j r r r r j j j r j r r j r r r r j j r j r r j r r r A A A A A A A A A A A A A A A A A A A A A A A A A                                                                     1 ( 1) 1 1 1 1 0 ) ( ) (by change of variables ( 1) and then by iv, lemma 2.4 of [1]) j j r r A A Q jh r j r             Therefore, the theorem is true for {0, 1}.k 
  • 4. Relationships among determining matrices, partials of indices of… www.ijmsi.org 4 | P a g e The rest of the proof is by induction on .k 1 1 ( 1) ( ) 1 1 1 1 1 0 0 Assume that the theorem is valid for for some integer , and for all such that t 0. Then, 2 , (( ), ) (( ( ( )) ), ) , (by lemma 2.7 of [1]). ( 1) ( j p p r i r i p p p j jh k p X t jh t X t j r i h t A A Q                          1 1 0 0 (by the induction hypothesis)[ ( )] ) j r i r i j r i h A A            1 1 1 0 1 1 0 0 0 1 1 1 1 1 0 ( 1) ([ ( )] ) ( 1) ([ ] ) ([ 1] ) ( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1]) j j p r p r p i p p r i r j p r p p r Q j r i h A A Q j r h A Q j r h A A Q j r h Q j r h A A                                            1 0 1 1 0 1 1 1 1 1 0 ( 1) ([ ] ) ([ 1] ) ( 1) ([ ] ) ([ 1] ) (by lemma 2.7 of [1]) Now we proceed to obtain the above sum by writing out the equivalent exp ressions j p r p p r j p r p p r Q j r h A Q j r h A A Q j r h Q j r h A A                             0 1 1 1 1 2 0 1 1 1 1 1 1 2 0 1 1 for each and then summing the equivalents: 0 ( ) ([ 1] ) ( ) ([ 1] ) 1 ( ([ 1] ) ([ 2] ) ) ([ 1] ) ([ 2] ) ) 2 ( ([ 2] ) ([ 3] ) ) p p p p p p p p p p p r r Q jh A Q j h A Q jh Q j h A r Q j h A Q j h A A Q j h A Q j h A r Q j h A Q j h A A Q                                2 2 1 1 1 1 3 3 3 0 1 1 1 1 1 1 ([ 2] ) ([ 3] ) 3 ( ([ 3] ) ([ 4] ) ) ([ 3] ) ([ 4] ) p p p p p j h A Q j h A r Q j h A Q j h A A Q j h A Q j h A                      1 0 1 1 1 1 1 1 1 0 1 1 1 1 1 The process continues up to , yielding 1 ( ([ ( 1)] ) ([ ] ) ) ([ ( 1)] ) ([ ] ) ( ([ ] ) ([ ( 1)] ) ) ([ )] ) ([ ( 1)] ) j p p j j p p j p p j p p r j r j Q j j h A Q j j h A A Q j j h A Q j j h A r j Q j j h A Q j j h A A Q j j h A Q j j h A                                      1 1 j Adding up the terms on the right-hand side for 0,1,2, ,r j  , it follows that only the first term corresponding to 0r  and the last term corresponding to r j survive the summation; all other terms cancel out. Therefore: 3.2 Corollary to theorem 3.1         ( ) ( ) ( ) ( ) 1 1 Let for where Then: for ( , ) ( , ), . Let ( , ) ( , ) ( , ) (0, ), ( , ) ( , ). , 1 , (11) : 0, 0,1,... T n k k k k k k kk k c c X t c c c c c c c t jh c Q jh B j t jh k                                    R
  • 5. Relationships among determining matrices, partials of indices of… www.ijmsi.org 5 | P a g e Proof The proof is immediate by noting that        ( ) ( ) 1 1 (by the preceeding theorem). Hence for ( , ) ( , ) . , 1 , : 0, 0,1,... kkk T k kc c X t B c t jh c Q jh B j t jh k                The following sequence of lemmas is needed in the proof of theorem 3.6 3.3First Corollary to Eq. 9: Expressing the partials of 2 0 k i i i A         in permutation form 1 1 1( ),0( ),1( ) 1 11 0 1 1 ( , ) Let , , be any nonnegative integers, , fixed such that , and . Then (a) !( )!( )! if , (b) k r k r r r k j j r k rk r i ir r k j j r i v v j r r v v P j k r j k j r k r A r r k j j r A A j k                                         1 1 1( ),0( ),1( ) 1 10 1 ( , ) ( )! !( )! if .j r j r r j k r k r j r i ij k r k r i v v v v P A r j k r k r A A j k                               Proof (a) And (b) follow from (9) with 2i  replaced by 1i   and noting that the superscript triples , , ;r r k j j r   , ,r j k r k r   are all nonnegative and therefore feasible. Moreover they are consistent with (9) as they sum to k +r and j +r in (a) and (b) respectively. This completes the proof. From above we have the following relations: 1 1 1 1 11 0 1 1 11 0 1 1( ),0( ),1( ) 1 1( ),0( ( , ) ( , ) 1 (12) !( )!( )! 1 ( )! !( )! k r j r k r k rk r i i v vr r k j j r i j rj r i i v vr j k r k r i r r k j j r j r r j k v v P v v P A A A r r k j j r A A A r j k r k r                                                               ),1( ) (13) r k r  Now sum over to get:{1, , 1} in (12)r j  1 1 1( ),0( ),1( ) 1 1 1 11 0 1 1 1 ( , ) 1 !( )!( )! (14)k r k r r r k j j r k rk rj i ir r k j j r r i j r v v v v P A r r k j j r A A                                      Now sum over in (13) to get{1, , 1}, :r k  1 1 1 1 1 11 0 1 1 1 1( ),0( ),1( )( , ) 1 ( )! !( )! (15)j r j r j rj rk i ir j k r k r r i k v v r r j k r k rv v P A r j k r k r A A                                     Therefore, we have proved the following lemma.
  • 6. Relationships among determining matrices, partials of indices of… www.ijmsi.org 6 | P a g e 3.4 Lemma expressing components of ( )kQ jh as a sum of partial derivatives of 2 0 k i i i A         1 1 1 1 1 11 0 1 1 1 1( ),0( ),1( )( , ) Let , , be any nonnegative integers, and fixed such that and , 0.Then: 1 (a) !( )!( )! ;k r k r k rk rj i ir r k j j r r i j r r r k j j r v v v v P j k r j k j r k r j k A r r k j j r A A k                                          (16)j 1 1 1 1 1 11 0 1 1 1 1( ),0( ),1( )( , ) 1 (b) ( )! !( )! ; (17)j r j r j rj rk i ir j k r k r r i k r r j k r k r v v v v P A r j k r k r A A j k                                        1 1 1( ),0( ) 1 1 0( ),1( ) 0 11 0 1 00 1 1,11 1 ( , ) ( , ) 1 (c) (18) ! ! 1 (d) , if (19) ( )! ! 1 (e) ( )! ! j k j k j k k k k j j j kj k i ij k i kk i ik j j i j i ij k j i v v v v P v v v v P A A A j k A A A k j k j j A j k k                                                      1 1 1( ),1( )( , ) , if (20)j k j j k k v v v v P A A j k            Proof Analogous to the proof of corollary 3.6.9 of [10], the superscripts are all feasible and consistent with (9); consequently the lemma is proved. Note that min{ , } 2j k  for explicit computational feasibility of (a) and (b). Further, the following result is needed to achieve our objective: 3.5 Lemma relating 1 2 1 { , } 1 1 2 1 2to ; , { 1,0,1}, k k i i i i i i i i A A i i i i                   in triple summations 1 2 2 1 0 1 1 1 1 1 1 1 ), 0( ),1(2 2 0 1 0 2 2 2 0 0 ( , ) ( ) 1 (a) , 0 k k i i i i r j k r k j r k kv v i i r j k r k j r A A k j k A j r v v P kA                                                               1 2 2 1 0 1 1 1 1 1), 0( ),1(2 2 1 1 00 1 2 2 2 , 1 0 0 ( , ) 0( ) (b) k k i i i i r j k r k j r k kv v r j k r k j r A A i i k j k A A k j r v v P                                                             
  • 7. Relationships among determining matrices, partials of indices of… www.ijmsi.org 7 | P a g e 0 2 2 1 0 1 1 1 1 0 { 1,1} 1 0 ), 0( ),1(2 2 1 0 2 2 2 , 1 0 ( , ) 0( ) (c) i i i i r j k r k j r k kv v i i j r j k r k j r k k A A k k j A A k r v v P                                                              Proof 1 1 First, note from theorem 3.2 of [11] and theorem 3.6.8 of [10], that k i i i A         equals the right-hand side without the evaluations at 0iu  , if ' 2'i  is replaced by ' 1'i   and j is replaced by j . 1 1 1 1 0 1 The proof is immediate, observing that ' 0 ' annihilates all the terms containing ,thereby yielding the equivalent expression for ; (b) ' 0 ' zeroes out all the terms containin (a) i i i k A A               1 1 0 0 0 { 1,1} 1 0 g ,thereby yielding the equivalent expression for ; (c) ' 0 ' eliminates all the terms containing ,thereby yielding the equivalent expression for . i i i i i i k k A A A A                           In the sequel, set 1 1 i i i F A    By the generalized Cayley-Hamilton theorem, 1 1 0 1 ( ) , kn n l k i i k i F A                1 0 1where the ( ) arepolynomials of degree with respect to the ; ( , , ).k is n l k s         The stage is now set to prove the equality of ranks of some concatenated determining matrices for finite and infinite horizons, using lemmas 3.4, 3.5 and the generalized Cayley-Hamilton theorem. 3.6 Theorem on Rank Equality of some concatenated determining matrices Let:  1 0 1 1 1 ˆ ( ) ( ) , ( ) , , ( ) : [0, ), 0, , ,( 1) , (21)n nQ t Q s B Q s B Q s B s t s h n h     where ( )kQ s is a determining matrix for the free part of (1) and is defined by (7) Then: 1 1 ˆ ˆrank ( ) rank ( ) (22)nQ t Q t        In the sequel, set 1 1 i i i F A    Generalized Cayley-Hamilton theorem, Lew (1966, pp. 650-3):
  • 8. Relationships among determining matrices, partials of indices of… www.ijmsi.org 8 | P a g e 1 1 0 1 ( ) , kn n l k i i k i F A                1 0 1where the ( ) arepolynomials of degree with respect to the ; ( , , ).k is n l k s         By lemma 3.4: 1 1 1 11( ),0( ) 0 1 { 1,1}1 0 0 1 1 1 1 11 0 1 ( , ) ( , ) 1 1 (23) ! ! ( )! ! 1 ( )! !( )! j k j jj k j k jj kj k j i i i ij k j k k i i j rj rk i ir j k r k r r i v v v v v v P v v P A A j k j k k A r j k r k r A A A A                                                                 1 11( ),1( ) 1( ),0( ),1( ) 1 1 ( , ) ( ); (24) j r j rj k k r j k r k r k v v r k v v P A A Q jh j k                  11 1 11( ),0( ) 0 1 1 01 0 0 1 1 1 1 11 0 1 ( , ) ( , ) Also: 1 1 (25) ! ! ( )! ! 1 !( )!( )! kj k j k j k k j k kj k k i i i ij k k j j i i k rk rj i ir r k j j r r i v vv v v v P v v A A j k k j j A r r k j j r A A A A                                                                 1 10( ),1( ) 1( ),0( ),1( ) 1 1 ( , ) ( ); (26) k r k j j k r r r k j j r j v r k v P v v P A A Q jh k j                  Hence for every non-negative integer ,p we have: 1 0 11 0 [ ] { 1,1}0 1 1 1 [ ] 1 11 0 1 1 ( ) (27) !( )! 1 ( [ ])![ ]! 1 ( [ ])! !( )! n p jn p j n p i ij n p i j j i ij n p n p i j rj rn p i ir j n p r n p r r i v Q jh A j n p A j n p n p A r j n p r n p r A                                                                         1 1 1 1 1 11( ),0( ) 1( [ ]),1( ) 1 1( [ ]),0( ),1( ) ( , ) ( , ) ( , ) , if , (28) jj n p j r v v n p r j n p jj n p j n p n p j r r j n p r n p r v v v v v P v v P v v P A A A A A j n p                                      
  • 9. Relationships among determining matrices, partials of indices of… www.ijmsi.org 9 | P a g e 0 11 1 ( ) !( )! ( )! !1 01 0 0 1 1 11 ( !( )!( )!1 11 0 1 (29) n p j n p n p j j Q jh A An p j n p n p j ji i i ij n p n p j ji i n p r j n p r Ai ir n p j j rr r n p j j r rr i Av                                                                                 1 1 1 1 1( ),0( ),1( ) ,1( ),0( ( , ) )1 ) 0( ),1( ) 1 1( , ) ( 1 if . (30), j r k r k r r r n p j j r v v jj n p v v v v P P P n p j j A A Av v vj n p kv vj n p n p jA A                              Now, using the generalized Cayley-Hamilton theorem in the same spirit as in theorem 3.6, we can prove that 1 1 ˆ ˆrank[ ( )] rank[ ( )].kQ t Q t  Indeed, by the generalized Cayley- Hamilton theorem: 0 1 0 1 1 1 1 0 1 0 0 0 1 1 1 1 0 1 ( ) , ( ) (31) ( ) (32) for some polynomials ( ), ( ), ( ) of d n p j k n p kn n i i k i i i i k i i i k i i k i n p r kn i i k i i i k i k k k A A A A A A                                                                                 egrees , , respectively, if . n p j k n p k n p r k n p j           Hence: 1 0 0 11 0 1 1 0 00 1 1 1 0 1 11 0 1 ( ) 1 ( ) !( )! 1 ( ) ( )! ! 1 ( ) ( !( )!( )! n p kn p jn k i ij n p k i kn pn k i in p j j k i kn p rjn k i ir r n p j j r k r i Q jh A j n p A n p j j A r r n p j j r                                                                              1 (33) if .n p j     By lemma3.5,
  • 10. Relationships among determining matrices, partials of indices of… www.ijmsi.org 10 | P a g e 1 1 2 2 0 1 0 0 1 1 1( ),0( ),1(2 2 ) 2 2 1 2 0 00 ( , , ) ( ) 1 !( )! ( ) * k n p j j n p k j r k k n p r j k k r j k r k j r k j r v v k j r v v P j n p A A Q jh                                                                                       1 10 1 1 1 2 2 0 0 1 1 1 ) 2 0 0 2 2 ( ),0( ),1(2 2 )1 1 ( ) ( )! ! 1 ( !( ) ( 0 (34) , , n p kn p j j n n k j r k k r j k k j r k k j r v v r j k r k j r A An p j j r vv P                                                                                     1 1 1 0 1 11 2 2 0 0 1 2 0 0 1 2 2 1 ) ( ) ( ),0( ),1(2 2 )!( )! 1( , ) if . *k n p r r r n p j j r jn k j r k r r j k k j r k k j r v v k r j k r k j r r n p j j r A A v v P n p j                                                                                 
  • 11. Relationships among determining matrices, partials of indices of… www.ijmsi.org 11 | P a g e 1 1 1 ) 1 0 ( ),0( ),1(2 2 1 1 2 2 0 0 1 1 2 2 2 00 0 ( , ) ( ) 1 ( )! 1 ( ) !( )! * n p j n p kj n p r j k r k j r k n k j r k k r j k v v k j k rj r A A v v P n p j j Q jh j n p                                                                                      1 1 0 1 1 1 2 2 0 1 0 1 1 ) 2 22 00 ( ),0( ),1(2 21 ! 0 1 ( !( )!( )! ( ( , , ) ) (35) n p n p j j n p r r k k j r k n r j k k v v k j k rj r r j k r k j rk A A r r n p j j r v v P                                                                                     1 1 1 0 0 1 1 2 2 0 1 1 ,1 1 ) 2 2 2 00 ( ),0( ),1(2 2 ( ) ( ) if . * n k k r n p j j r k k j r j r j k r v v vk k j k rj r r j k r k j r A A v P n p j                                                                       1 0 1 2 0 1 2 1 1 It follows immediately that the sum of the powers of , and , and [ ], 0 in every permutation involving ˆ ˆis at most 1.Consequently rank ( )] [ ( ) and for every integer 0,lead rankn p n A A A A A A tn Q t Q t p     1 1[ ˆ ˆing to the conclusion that rank ( )] [ ( )],as desired.rankn p nQ t Q t  IV CONCLUSION This paper exploited the results in [1] to establish appropriate and relevant relationships among determining matrices, indices of control systems matrices and systems coefficients with respect to single-delay autonomous linear neutral control systems. In the sequel the paper used these relationships in conjunction with the generalized Caley-Hamilton theorem to prove that the associated controllability matrices for finite and infinite horizons have the same rank. The utility of these results can be appreciated in the proof of necessary and sufficient conditions for the Euclidean controllability of system (1) on the intervals 1 1 0[0, ], this;tt    will be discussed in a subsequent paper. REFERENCES [1] Ukwu, C. (2014h). The structure of determining matrices for single-delay autonomous linear neutral control systems.International Journal of Mathematics and Statistics Inventions (IJMSI), Volume 2, Issue 3,March 2014, pp.31-47. [2] Chidume, C. An Introduction to Metric Spaces (The Abdus Salam, International Centre for Theoretical Physics, Trieste, Italy, 2003). [3] Chidume, C. Applicable Functional Analysis (The Abdus Salam,International Centre for Theoretical Physics, Trieste, Italy, 2007). [4] Royden, H.L.Real Analysis, 3rd Ed. (Macmillan Publishing Co., New York, 1988). [5] Chukwu, E.N.Stability and Time-optimal control of hereditary systems (Academic Press, New York, 1992). [6] Chukwu, E.N. Differential Models and Neutral Systems for Controlling the Wealth of Nations. Series on Advances in Mathematics for Applied Sciences (Book 54), World Scientific Pub Co Inc; 1st edition, (2001). [7] Hale, J. K., Theory of functional differential equations., Applied Mathematical Science, Vol. 3, Springer-Verlag, New York,(1977). [8] Tadmore, G. Functional differential equations of retarded and neutral types: Analytical solutions and piecewise continuous controls. J. Differential equations, Vol. 51, No. 2, (1984) 151-181. [9] Gabasov, R. and Kirillova, F., The qualitative theory of optimal processes (Marcel Dekker Inc., New York, 1976). [10] Ukwu, C. On Determining Matrices,Controllability and Cores of Targets of Certain Classes of Autonomous Functional Differential Systems with Software Development and Implementation.Doctor of Philosophy Thesis, UNIJOS(In progress),(2013a). [11] Ukwu, C. (2014g). The structure of determining matrices for a class of double-delay control systems.International Journal of Mathematics and Statistics Inventions (IJMSI)Volume 2, Issue 3, March 2014, pp. 14-30.