I13 math plus chinese equals better math scores - mei peng-zhao


Published on

Published in: Education, Technology
  • Be the first to comment

  • Be the first to like this

No Downloads
Total views
On SlideShare
From Embeds
Number of Embeds
Embeds 0
No embeds

No notes for slide

I13 math plus chinese equals better math scores - mei peng-zhao

  1. 1. Ping Peng Jing Zhao Tingting Mei 
  2. 2. Minnetonka Chinese Immersion ProgramEarly total Chinese immersion programs from 2006The curriculum parallels the district curriculum in all subjects. Content and instruction are aligned with and guided by Common Core standards and standards of Minnetonka Public Schools. Core  teaching materials are adopted into the Chinese immersion program. (e.g. The core content material selection: Math—Everyday Math, Science‐‐‐Foss Science, Social Study‐‐‐Social Studies alive, etc… ) Students participate in the same standard tests, such as MCA, MAP/NWEA, etc. The same expectations/goals of academic achievement are outlined. The classroom context is same as that of English and Spanish programs. Based on the demographic analysis of Minnetonka Public Schools, students population in all programs are no different. The school days and hours are same. The time allotment is the same as that of English and Spanish programs. (For example,  the time for the math instruction and learning is about 60 minutes.)
  3. 3. MathematicsNWEA ScoreStudentCountFall 2010Mean RITFall 2011 MeanRITFall 2012 MeanRITGrade K Math Primary GradesEnglish 423 147.8 150.8 147.3Chinese Immersion 106 156.6 155.3 153.8Spanish Immersion 276 152.8 152.1 152.1Grade 1 Math Primary GradesEnglish 400 168.7 168.7 169.8Chinese Immersion 86 174.0 175.9 173.3Spanish Immersion 257 170.3 171.1 171.4Grade 2 2-5 MN 2007English 400 184.8 186.0 186.2Chinese Immersion 98 186.4 185.0 185.1Spanish Immersion 235 184.0 186.2 189.1Grade 3 2-5 MN 2007English 441 200.2 199.3 201.9Chinese Immersion 67 200.1 203.7 202.6Spanish Immersion 211 201.5 200.3 202.9Grade 4 2-5 MN 2007English 509 212.2 213.3 213.1Chinese Immersion 54 213.0 216.1 218.1Spanish Immersion 174 212.6 214.7 215.9Grade 5 2-5 MN 2007English 505 * 224.3 225.6Chinese Immersion 56 * 225.7 228.4Spanish Immersion 147 * 224.1 227.3Grade 6 6 + Math, Alg, GeomEnglish 556 * * 232.3Chinese Immersion 31 * * 234.7Spanish Immersion 113 * * 234.1TABLE 1: COMPARISONS BETWEEN ENGLISH, SPANISH, AND CHINESE STUDENT PERFORMANCE ON THE 2012 NWEAMinnetonka Chinese Immersion Program
  4. 4. 147.3169.8186.2201.9213.1225.6232.3153.8173.3185.1202.6218.1228.4234.7152.1171.4189.1202.9215.9227.3234.10 50 100 150 200 250 300K123456Spanish Chinese English150.8168.7186.0199.9213.3224.3155.3175.9185.0203.7216.1225.7152.1171.1186.2200.3214.7224.10 50 100 150 200 250 300K12345Spanish Chinese EnglishFall 2011 Fall 2012Cohort GroupsExceededGrowthProjectionsMinnetonka Chinese Immersion Program
  5. 5. hineseC + Math=Better Chinese Language ‐‐‐‐Invisible Communicator in Math  
  6. 6. Chinese Language ‐‐‐‐ Invisible Communicator in Math  Literal meaning of the character(s) informs the actual meaning of the math concept  (be able to read, be able to understand)Basic math concepts Core math content多 (many) + 边 (side) + 形 (shape) = polygon  五 (five) +  边(side) +形 (shape) = pentagon八 (eight) +  边(side) +形 (shape) =octagon  Example分(divide) +数(number)=fraction 真 (real)+分(separate) +数(number)= properfraction假 (not real) +分(separate) +数(number)= improper fraction带 (attached) +分(separate) +数(number)= mixed fraction角=angle 邻 (neighbor) +角 (angle) = adjacent angle三 (three) + 角 (angle) +形 (shape) = triangle平(straight)行(walk)= parallel  平行(parallel)线(line)=parallel line 平行(parallel)四边形(quadrilateral) = parallelogram
  7. 7. Word‐formation patterns give students access to meanings of many new words by learning one single character unit第 + # = ordinal• 第一 means first, 第二 means second,第三 means third, etc.# + place value (tens, hundreds, thousands) = _____• 3万4千5百6十7  = 34,567# + 分cents= _____• 1分means penny , 5分means nickel , 10分means dime , 25分means quarter周(week)+# = day of week• 周(week)+一 (one) = Monday, 周(week)+二 (two) = Tuesday, etc.#+月(month) = name of month• 一(one)+月(month) =January, 二 (two)+月(month) =February Chinese Language ‐‐‐‐ Invisible Communicator in Math  
  8. 8. Concise, straightforward communicationChinese English一共有多少? How many do you have altogether?还剩多少? How many are there left?1品脱里有几杯? How many cups are in 1 pint?Chinese EnglishBrenda 一共花了$ 5.56买了4个汉堡包给家人午餐。2个汉堡包多少钱?Brenda bought 4 cheeseburgers for her family for lunch. The total was $ 5.56. How much did 2 cheeseburgers cost?A,B两城市之间的高速公路长420千米,同时从A,B两地各开出一辆汽车相对而行。从A开出的汽车每小时行65千米,从B开出的汽车每小时行75千米,经过几小时两汽车相遇?The freeway between City A and City B is 420kilometers long. At the same time, one carstarts driving from City A at 65Kph, and anothercar starts driving from City B at 75kph. Whenwill these two cars meet each other?Chinese Language ‐‐‐‐ Invisible Communicator in Math  
  9. 9. Chinese + athM = Better Teaching Methodologies‐‐‐Activator  of Learning Strategies
  10. 10. Teaching MethodologyExpectationPlanning Instructional sequenceConceptual variationProcedural variationFeedbackTeaching Methodologies‐‐‐Activator  of Learning Strategies
  11. 11. Teaching MethodologyExpectation• Math is science of thinking • helps in developing  mathematical, reasoning, and  logical thinking• It is important that students learn basic math knowledge and skills well• Students can learn math well • Teachers  should take responsibilities for students’ math learning • Students’ attitudes and value towards math learning needs to be coherent with  that of teachers for creating a cohesive learning environment Teaching Methodologies‐‐‐Activator  of Learning Strategies
  12. 12. Elementary Math in China Main Curriculum SupplymentalTeaching Methodologies‐‐‐Activator  of Learning StrategiesPlanning http://bbs.xxsx.cn/file.asp?fid=1867http://www.pep.com.cn/xxsx/xxsxxs/xstblx/xs1bkb/
  13. 13. Knowledge Package: A group of pieces of knowledgeAddition of Groups of Ten(e.g. 30+50=80, etc.. )One Digit Number Addition (e.g. 3+5=8)Place Value(e.g. ones, tens, etc..)  Counting by 10s(e.g. 10. 20. etc…) Two Digit Number Addition (e.g. 13+15=28)Teaching Methodologies‐‐‐Activator  of Learning StrategiesPlanning 
  14. 14. Instructional sequencesAddition of Groups of Ten(e.g. 30+50=80, 50+30=80, etc.. )One Digit Number Addition (e.g. 3+4=7)Place Value(e.g. ones, tens, etc..)  Counting by 10s(e.g. 10, 20, etc…) Two Digit Number Addition (e.g. 13+15=28, 15+13=28, etc…)Teaching Methodologies‐‐‐Activator  of Learning StrategiesPlanning Examplehttp://www.pep.com.cn/xxsx/jszx/tbjxzy/xs1bjxzy/jcyd/201010/t20101008_923708.htm
  15. 15. Multiple schemasThe freeway between City Aand City B is 420 kilometerslong. At the same time, one carstarts driving from City A at65Kph, and another car startsdriving from City B at 75kph.When will these two cars meeteach other?At the same time, Lee andWang start running in theopposite directions arounda race track that is 400mlong. Lee’s rate is 5 metersper second, and Wang’srate is 3 meters per second.When will they meet eachother for the first time?Red Cycling team rides125 kilometers per day,and Black Cycling teamrides 100 kilometers perday. If the Black teamstarts the trip 2 daysearlier, when will theRed team catch up?A,B两城市之间的高速公路长420千米,同时从A,B两地各开出一辆汽车相对而行。从A开出的汽车每小时行65千米,从B开出的汽车每小时行75千米,经过几小时两汽车相遇?李和王在周长为400米的环形跑道上跑步,李每秒钟跑5米,王每秒钟跑3米。他们从同一地点同时出发,反向而跑,那么,二人从出发到第一次相遇需多长时间?自行车红队每天行125千米,自行车黑队每天行100千米。如果黑队早出发2天,红队几天能追上黑队?Teaching Methodologies‐‐‐Activator  of Learning StrategiesInstructional sequenceConceptual variationS=VT 距离=速度 x 时间 co
  16. 16. Instructional sequenceConceptual variation• Multiple schemas(e.g. purposely designed or chosen situations, ) in teaching mathematic concepts • Analogical comparisons • Leveled extraneous commonalities or features • Reconstructed relations Teaching Methodologies‐‐‐Activator  of Learning Strategies
  17. 17. Instructional sequenceProcedural variation• Varying a problem: verifying conditions, change the results and generalization    • Solving a problem by multiple methods: verifying the different processes of solving a problem; associating different methods of solving one problem • Multiple application of a method: applying the same method to a group of similar problems Teaching Methodologies‐‐‐Activator  of Learning Strategies
  18. 18. Teaching Methodologies‐‐‐Activator  of Learning Strategies
  19. 19. PraiseRight Answer Not right answer Ask for explanation Guess Complete explanation Self‐correction Problematic Aspects: Explainingraising questionsdisplaying examples  Do not know Re‐confirmMore relevant,  and explicit explanationTeaching Methodologies‐‐‐Activator  of Learning StrategiesFeedback
  20. 20. Learning StrategiesAdaptionReceptionFrequencyFlexibility Selection EfficiencyAutomaticityConfidenceMotivation Teaching Methodologies‐‐‐Activator  of Learning Strategies
  21. 21. One example 
  22. 22. EfficiencyReceptionFrequencyFlexibility Selection AdaptionConfidenceMotivation AutomaticityTeaching MethodologyExpectationPlanning Instructional sequenceConceptual variationProcedural variationFeedbackTeaching Methodologies‐‐‐Activator  of Learning Strategies
  23. 23. Enhanced mental flexibilityEnhanced problem‐solving capabilityExpanded metalinguistic abilityEnhanced learning capacityEnhanced interpersonal abilityReduced age‐related mental diminishmentEnhanced divergent thinkingEnhanced pattern recognitionChinese + Math=Better
  24. 24. Chinese + Math=Better“As a district form of bilingual education, school‐based language immersion programs are intensive, subject‐matter‐driven language programs that aim for academic achievement, additive bilingualism/bi‐literacy (multilingualism/multi‐literacy) and cultural pluralism through increased intercultural competence.”  Tara Fortune, June 2010
  25. 25. Thank You!  
  26. 26. Reference Ma, L. (1999). Knowing and Teaching Elementary mathematics. Mahwah, NJ: ErlbaumBraithwaite, D. W., & Goldstone, R. L. Inducing Mathematical Concepts from Specific Examples: The Role of Schema‐Level Variation.Murray, S., & Lai, M. Y. Teaching with Procedural variation: A Chinese Way of Promoting Deep Understanding of MathematicsEducation, Audiovisual and Culture Executive Agency (2009): Study on the contribution of multilingualism to creativity. Brussel: Author. Colin Baker(2006): Foundations of Bilingual Education And Bilingualism 4th edition. Tonawanda, NY: Multilingual Matters Ltd