Your SlideShare is downloading. ×
0
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Proyecto dinámicas biológicas de los fragmentos de bosques - Thomas Lovejoy

554

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
554
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
1
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide
  • Current emissions are tracking above the most intense fossil fuel emission scenario established by the IPCC Special Report on Emissions Scenarios-SRES (2000), A1FI (A1 Fossil Fuel intensive); and moving rapidly away from low stabilization scenarios, eg, 450 ppm. Scenarios trends are averages across all models available for each scenario class. Since this publication, global fossil fuel emissions have been revised and used in Canadell et al. 2007, PNAS. Red dots indicate the revised and updated numbers for 2005 and 2006 respectively. When the IPCC-SRES scenarios where published the AIFI was considered an outrageous scenario which was there as a top end, and for almost 10 years we have been happy to use the B1 as a middle of the rate scenario for what it is most likely to happen. We have studied impacts, risk assesment and we have even developed policies with this scenario.
  • Case studies have provided a significant burden of evidence that biological systems are changing in response to climate change. Expressed as phenology (biological responses to the environment (first budding, first fruiting, migration timing, mating, nesting, etc)) these studies suggest that many biological organisms are being effected, even important pollinators for US agriculture. Global climate model predictions have been combined with regional estimates of phenology (vegetative greeness) to forecast changes in regional biological response to climate change. These models predict that significant regional scale changes will occur. What we lack is an ability to verify these forecasts or how the regional scale responses cascade down through the structure and function of the biosphere including organisms and their relationships.
  • Through 30 conceptual design workshops and 3 community reference design workshops (160 of 700 volunteers) the biological sciences community has identified the most significant questions that need to be addressed if we are to understand regional to continental scale biosphere processes. The highlighted words signify five grand environmental challenges that have been identified by the National Academy of Sciences as the most significant challenges facing the US. These questions led to the formation of the science requirements, infrastructure requirements, infrastructure deployment, and cyberinfrastructure integration that comprises the NEON national instrument platform. NEON is transformative: In design Scale of questions and therefore research enabled Technological approach Citizen Science (intimate linking of science and education) Cyberinfrastructure Forecasting
  • Transcript

    • 1. Healing the Planet : Conservation of the World’s Tropical Forests International Year of Forests Symposium Instituto Alexander von Humboldt November 1, 2011 Thomas E. Lovejoy, University Professor Environmental Science and Policy George Mason University Biodiversity Chair. The Heinz Center THE H. JOHN HEINZ III CENTER FOR SCIENCE, ECONOMICS AND THE ENVIRONMENT
    • 2.  
    • 3.  
    • 4.  
    • 5.  
    • 6.  
    • 7.  
    • 8.  
    • 9.  
    • 10.  
    • 11.  
    • 12.  
    • 13.  
    • 14.  
    • 15.  
    • 16.  
    • 17.  
    • 18.  
    • 19.  
    • 20.  
    • 21.  
    • 22.  
    • 23.  
    • 24.  
    • 25.  
    • 26.  
    • 27.  
    • 28.  
    • 29.  
    • 30. Dr. Svante August Arrhenius 1859-1927
    • 31. Source: Wallace Broecker Analysis of a Greenland ice core oxygen isotope proxy
    • 32. Years before present CO 2 -concentration (ppm) 1750 200 240 280 320 360 160 400 Siegenthaler U et al. (2005) Science 310:1313 Petit JR et al. (1999) Nature 399:429 2007 Currently 385 ppm  Ch Körner CO 2 for the Last 600,000 Years 0 100'000 200'000 300'000 400'000 500'000 600'000
    • 33. Source: Hadley Centre and Climatic Research Unit, School of Environmental Sciences, UEA Global temperature record temperature anomaly (degC)
    • 34. Fossil Fuel Emissions: Actual vs. IPCC Scenarios Global Carbon Project; Raupach et al 2007, PNAS (updated) (Avgs.) SRES (2000) aver. growth rates in % y -1 for 2000-2010: A1B: 2.42 A1FI: 2.71 A1T: 1.63 A2: 2.13 B1: 1.79 B2: 1.61 Observed 2000-2007 3.5% 2006 2005 2007
    • 35. Signals from nature T HE H . J OHN H EINZ III C ENTER FOR S CIENCE, E CONOMICS AND THE E NVIRONMENT Lara Hansen / WWF Jeremy Little / University of Washington
    • 36. Earlier flowering date
    • 37. Kew Magazine, Summer 2007 Climate Change at the Royal Botanic Gardens, Kew
    • 38. Edith’s Checkerspot
      • Range shift northward and upward during the 20th century
      • Most extinctions in south and low elevations
    • 39. Source: National Arbor Day Foundation Hardiness zones adjusted to warmer climate
    • 40. Biological Response Phenological changes attributed to recent climate change McCarty (2001) White et al. (2004) National Ecological Observatory Network (NEON)
    • 41. © WWF-Canon / Michèle D é praz
    • 42. Increasing number of dry days Source: J.A. Pounds et al 2005
    • 43. Looking ahead T HE H . J OHN H EINZ III C ENTER FOR S CIENCE, E CONOMICS AND THE E NVIRONMENT Jaan Lepson
    • 44. Sugar Maple range projections by 5 GCMs with 2 x CO 2 Source: A.M. Prasad and Iverson, L.R: www.fs.fed.us/ne/delaware/atlas/index.html
    • 45. Elevated night time temperatures magnify bark beetle impact Source: D. Struck 3/1/2006, Washington Post , pA1 ‘ Rapid Warming’ Spreads Havoc in Canada’s Forests Wednesday, March 1, 2006 QUESNEL, B.C. -- Millions of acres of Canada's lush green forests are turning red in spasms of death. A voracious beetle, whose population has exploded with the warming climate, is killing more trees than wildfires or logging.
    • 46. Mountain Pine Beetle outbreaks (1959-2002) Courtesy of Mike Bradley, Canfor Corporation
    • 47. Courtesy of NOAA/NCAR
    • 48. 2010 2005 Amazon Rainfall in 2010 and 2005 (deviation from 10-year mean) S. Lewis, P. Brando, D. Nepstad, submitted
    • 49.  
    • 50. Critical thresholds in the Earth system Where local or regional changes may have strong effects on earth system interactions, feedbacks, or teleconnections ?
    • 51. Science Magazine, November 23, 2007 IPCC Climate Change and Impact Projections
    • 52. (1) Arctic sea-ice (2) Greenland ice-sheet stability (3) Antarctic ice-sheet stability (4) Major ecosystem disruption Why is a CO 2 target of 450ppm too high ?
    • 53. What is a “safe” level? James Hansen, et al., 2008 350 ppm
    • 54. What can be done Adaptation -Revise Conservation Strategies Limit Greenhouse Gas Concentrations -Reduce and eliminate emissions --revise energy base for society --reduce/eliminate deforestation
    • 55. Increase natural connectivity to facilitate species movement Adaptation: Revise conservation strategies Minimize climate change impacts by reducing other stresses, e.g., siltation on coral reefs
    • 56. Limit Greenhouse Gas Concentrations Revise Energy Base for Society
    • 57. Limit Greenhouse Gas Concentrations 20% of Annual Emissions come from deforestation
    • 58. Fate of Anthropogenic CO 2 Emissions (2000-2007) Canadell et al. 2007, PNAS (updated) 1.5 Pg C y -1 + 7.5 Pg C y -1 Atmosphere 46% 4.2 Pg y -1 Land 29% 2.6 Pg y -1 Oceans 26% 2.3 Pg y -1
    • 59. Long atmospheric residence times for greenhouse gases
    • 60. What can be done Lower Atmospheric CO 2 - Restore ecosystems ( biodiversity and carbon ) - Non-biological CO 2 removal
    • 61. Origin of land plants Expansion of angiosperms Present-day CO 2 The Role of Life Processes
    • 62. Over the past three centuries, ecosystems have lost 200-250 billion tons of carbon
    • 63. Planetary Engineering Using Ecosystems CO2 PPM Time 280
    • 64. The Role of Forests
    • 65. Photo courtesy USDA NRCS  Restoring Grazing Land
    • 66. Photos: United States Department of Agriculture—Natural Resources Conservation Service . Modify Agriculture to Build up Soil Carbon
    • 67. Re-Greening the Emerald Planet

    ×