Your SlideShare is downloading. ×
0
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Reciprocals Oct 13th
Upcoming SlideShare
Loading in...5
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Text the download link to your phone
Standard text messaging rates apply

Reciprocals Oct 13th

293

Published on

Published in: Education, Technology
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total Views
293
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

Report content
Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
No notes for slide

Transcript

  1. Reciprocals
  2. Given the function: f(x) = 2x + 1 1 Graph  f(x) 
  3. 1 Graph  f(x) 
  4. Given f(x) = 2 ­ x 1 Graph  f(x) 
  5. Sketch the graph 1 Graph  f(x) 
  6. 2x Graph f (x) =  x ­ 1 1. Find and sketch the vertical asymptote.   the place where the graph is undefined where the denominator is zero the graph will not cross the vertical asymptote  you can have more than one
  7. 2. Find and sketch the horizontal asymptote.  you can have no more than one  if the degree of the numerator is less than  the denominator  y = 0 is the asymptote if degree of numerator is greater than the  denominator there is no horizontal asymptote if the degrees are equal the line y = a/b is the  horizontal asymptote where a and b are the  lead coefficients.
  8. 3. Find and plot the y ­ intercept by evaluating     f (0) 4. Find the x ­ intercept by solving the      numerator
  9. 5. Use sign analysis to determine where      function is positive and negative.  6. Use smooth curves to complete graph. 
  10. And Now:  Exercise 10

×