0
Upcoming SlideShare
×

Thanks for flagging this SlideShare!

Oops! An error has occurred.

×
Saving this for later? Get the SlideShare app to save on your phone or tablet. Read anywhere, anytime – even offline.
Standard text messaging rates apply

# Reciprocals Oct 13th

293

Published on

Published in: Education, Technology
0 Likes
Statistics
Notes
• Full Name
Comment goes here.

Are you sure you want to Yes No
• Be the first to comment

• Be the first to like this

Views
Total Views
293
On Slideshare
0
From Embeds
0
Number of Embeds
0
Actions
Shares
0
2
0
Likes
0
Embeds 0
No embeds

No notes for slide

### Transcript

1. Reciprocals
2. Given the function: f(x) = 2x + 1 1 Graph  f(x)
3. 1 Graph  f(x)
4. Given f(x) = 2 ­ x 1 Graph  f(x)
5. Sketch the graph 1 Graph  f(x)
6. 2x Graph f (x) =  x ­ 1 1. Find and sketch the vertical asymptote.   the place where the graph is undefined where the denominator is zero the graph will not cross the vertical asymptote  you can have more than one
7. 2. Find and sketch the horizontal asymptote.  you can have no more than one  if the degree of the numerator is less than  the denominator  y = 0 is the asymptote if degree of numerator is greater than the  denominator there is no horizontal asymptote if the degrees are equal the line y = a/b is the  horizontal asymptote where a and b are the  lead coefficients.
8. 3. Find and plot the y ­ intercept by evaluating     f (0) 4. Find the x ­ intercept by solving the      numerator
9. 5. Use sign analysis to determine where      function is positive and negative.  6. Use smooth curves to complete graph.
10. And Now:  Exercise 10