Lesson 4 Nov 17 09

396 views
292 views

Published on

Published in: Education, Sports
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
396
On SlideShare
0
From Embeds
0
Number of Embeds
7
Actions
Shares
0
Downloads
2
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Lesson 4 Nov 17 09

  1. 1. Given f(x) = x3 g(x) = x5 . Find f '(x)   g '(x) f '(x) = 3x2 g '(x) = 5x4
  2. 2. The Product Rule . . d [f(x)  g(x)] = f(x)  g '(x) + g(x)  f '(x) . dx
  3. 3. 2 3 Find the derivative of  f(x) =  (x  + 2) (x  ­ 3) 1) Use the product rule
  4. 4. 2 3 Find the derivative of  f(x) =  (x  + 2) (x  ­ 3) 2) Multiply then differentiate
  5. 5. Quotient Rule q(x) = f(x) g(x) g(x) . q(x) = f(x)
  6. 6. The Quotient Rule d [  f(x)  ] . . g(x)  f '(x) ­ f(x)  g '(x) = dx g(x)   [g(x)]2
  7. 7. Derivatives of Trigonometric Functions Sine Function d sin(x)  cos(x) = dx
  8. 8. Cosine Function d (cos x) = ­ sin(x)  dx
  9. 9. Derivatives of Trig Functions d (sin x) = cos(x) d (csc x) = ­ cscx cotx dx dx d ( cos x) = ­ sin(x) d (sec x) secx tanx  = dx dx d (tan x) = sec2 (x) d (cot x) = ­ csc2 x dx dx
  10. 10. Exercise 4.3 Questions 1 ­ 23 Odd numbers

×