Like this presentation? Why not share!

# Lesson 03 Appsof Integrals Mar23

## on Mar 23, 2010

• 421 views

### Views

Total Views
421
Views on SlideShare
421
Embed Views
0

Likes
0
0
0

No embeds

### Report content

• Comment goes here.
Are you sure you want to
Your message goes here

## Lesson 03 Appsof Integrals Mar23Presentation Transcript

• Shell Method
• If the function below is revolved about the x­axis, find the volume of  the solid generated between f, the x­axis, x = 0, and x = 2 f(x) = x2 32 5
• How would things be different if the function is revolved about the  y­axis? 8 f(x) = x2 32 5
• Consider the region S bounded between the graphs of the functions ƒ and g. f(x) = 0.5x2 ­ 2x + 4 g(x) = 4 + 4x ­ x2 Find the volume of the solid generated by revolving S around the x­axis.
• Consider the region S bounded between the graphs of the functions ƒ and g. f(x) = 0.5x2 ­ 2x + 4 g(x) = 4 + 4x ­ x2 Find the volume of the solid generated by revolving S around the y­axis.
• Exercise 8.3
• Attachments cylinders