• Share
  • Email
  • Embed
  • Like
  • Save
  • Private Content
Lesson 03 Appsof Integrals Mar23
 

Lesson 03 Appsof Integrals Mar23

on

  • 421 views

 

Statistics

Views

Total Views
421
Views on SlideShare
421
Embed Views
0

Actions

Likes
0
Downloads
0
Comments
0

0 Embeds 0

No embeds

Accessibility

Categories

Upload Details

Uploaded via as Adobe PDF

Usage Rights

© All Rights Reserved

Report content

Flagged as inappropriate Flag as inappropriate
Flag as inappropriate

Select your reason for flagging this presentation as inappropriate.

Cancel
  • Full Name Full Name Comment goes here.
    Are you sure you want to
    Your message goes here
    Processing…
Post Comment
Edit your comment

    Lesson 03 Appsof Integrals Mar23 Lesson 03 Appsof Integrals Mar23 Presentation Transcript

    • Shell Method
    • If the function below is revolved about the x­axis, find the volume of  the solid generated between f, the x­axis, x = 0, and x = 2 f(x) = x2 32 5
    • How would things be different if the function is revolved about the  y­axis? 8 f(x) = x2 32 5
    • Consider the region S bounded between the graphs of the functions ƒ and g. f(x) = 0.5x2 ­ 2x + 4 g(x) = 4 + 4x ­ x2 Find the volume of the solid generated by revolving S around the x­axis.
    • Consider the region S bounded between the graphs of the functions ƒ and g. f(x) = 0.5x2 ­ 2x + 4 g(x) = 4 + 4x ­ x2 Find the volume of the solid generated by revolving S around the y­axis.
    • Exercise 8.3
    • Attachments cylinders